Turbulence Intermittency for Cloud Physics (TITCHY)
云物理的湍流间歇性 (TITCHY)
基本信息
- 批准号:EP/Z000149/1
- 负责人:
- 金额:$ 221.74万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Since the dawn of humankind people have looked up at the sky, perhaps projected every day images into the dazzling variety of shapes that cumulus clouds produce, and asked "why do clouds form and then disappear?" and "why does it rain?" To this day these questions remain unanswered, although of course our understanding of the physics of clouds has advanced enormously. It has been provocatively asked "can we understand clouds without turbulence?" to which my response is a resounding "no!" Clouds grow by entraining environmental air across the sharply defined visible boundary of the cloud. Similarly they decay through precipitation, and more importantly the detrainment of air back to the environment. Neither of these processes are well understood. In recent years I have jump started the field of entrainment between two adjacent regions of turbulence, or turbulent/turbulent entrainment (TTE) which is precisely the scenario that occurs for a warm cumulus cloud in the turbulent atmospheric boundary layer. Entrainment dilutes a cloud and fundamentally alters its microphysics, yet TTE for a cloud is not understood in part because of its inherent intermittency. Without understanding the TTE of water mass, energy, momentum, buoyancy, and heat into a cloud it is not possible to parameterise it and thereby improve weather/climate forecasts. TITCHY will do this, through a carefully co-articulated campaign of state-of-the-art experiments and simulations specifically devised to assess the importance of my TTE paradigm to cloud microphysics. The second thrust of TITCHY is to examine the physics of water droplets within a cloud; in particular the forces that act on them and how they affect the collision/coalescence process that ultimately yields raindrops. These forces are subject to intermittent turbulent physics hitherto neglected but potentially of critical importance. Based on my transformative new ideas, TITCHY seeks to tackle a centuries-old problem with a modern outlook.
自人类诞生之日起,人们就抬头仰望天空,或许将每天的影像投射到积云产生的各种令人眼花缭乱的形状中,并问“为什么云会形成然后消失?”和“为什么下雨?”直到今天,这些问题仍然没有答案,尽管我们对云物理学的理解已经取得了巨大的进步。有人挑衅地问“我们能在没有湍流的情况下理解云吗?”我的回答是响亮的“不!”云通过夹带环境空气穿过云的清晰可见边界而生长。同样,它们会通过降水而腐烂,更重要的是,通过将空气带回环境中而腐烂。这些过程都没有被很好地理解。近年来,我开始研究两个相邻湍流区域之间的夹带领域,即湍流/湍流夹带(TTE),这正是湍流大气边界层中温暖积云发生的情况。夹带会稀释云并从根本上改变其微观物理性质,但云的 TTE 部分由于其固有的间歇性而未被理解。如果不了解云中水量、能量、动量、浮力和热量的 TTE,就不可能对其进行参数化,从而改善天气/气候预报。 TITCHY 将通过精心设计的最先进的实验和模拟活动来实现这一目标,这些实验和模拟专门设计用于评估我的 TTE 范式对云微物理的重要性。 TITCHY 的第二个目标是研究云中水滴的物理特性。特别是作用在它们上的力以及它们如何影响最终产生雨滴的碰撞/合并过程。这些力受到间歇性湍流物理的影响,迄今为止一直被忽视,但可能至关重要。基于我的变革性新想法,TITCHY 力求以现代视角解决一个存在数百年历史的问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Oliver Buxton其他文献
The Effects of Free-Stream Eddies on Optimized Martian Rotorcraft Airfoils
自由流涡流对优化火星旋翼机机翼的影响
- DOI:
10.2514/6.2024-2505 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Lidia Caros;Oliver Buxton;Peter Vincent - 通讯作者:
Peter Vincent
Oliver Buxton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Oliver Buxton', 18)}}的其他基金
Accurate modelling of wind turbine wake spreading through consideration of realistic turbulent entrainment: revolutionising wind farm optimisation
通过考虑现实湍流夹带对风力涡轮机尾流传播进行精确建模:彻底改变风电场优化
- 批准号:
EP/V006436/1 - 财政年份:2021
- 资助金额:
$ 221.74万 - 项目类别:
Fellowship
Fractal forcing of axisymmetric turbulent jets; both fully developed and impulsively forced
轴对称湍流射流的分形强迫;
- 批准号:
EP/L023520/1 - 财政年份:2014
- 资助金额:
$ 221.74万 - 项目类别:
Research Grant
相似国自然基金
TFEB介导自噬调控Nrf2核转位在间歇性低氧认知损害中的作用及机制
- 批准号:82301672
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于PYCR1/CREB1探究慢性间歇性低氧改变血管通透性和促进肿瘤转移的机制
- 批准号:82370087
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
间歇性列车荷载作用下路基填料变形特性及计算模型研究
- 批准号:52308335
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
间歇性缺氧重编程肝脏巨噬细胞通过IL-6/NLRP3/GPX4信号诱导NAFLD肝损伤的机制研究
- 批准号:82371135
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
超级增强子驱动AHCY高表达参与HNF4α-PPARγ调控网络在间歇性禁食改善NAFLD中的作用机制
- 批准号:82370904
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345581 - 财政年份:2024
- 资助金额:
$ 221.74万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345582 - 财政年份:2024
- 资助金额:
$ 221.74万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345583 - 财政年份:2024
- 资助金额:
$ 221.74万 - 项目类别:
Standard Grant
CAREER: Intermittency and Two-Fluid Transitions in Pulsed-Power-Driven Magnetized Turbulence
职业:脉冲功率驱动磁化湍流中的间歇性和二流体转变
- 批准号:
2339326 - 财政年份:2023
- 资助金额:
$ 221.74万 - 项目类别:
Continuing Grant
Landscape sensitivity to past and future climate: Solving the intermittency puzzle
景观对过去和未来气候的敏感性:解决间歇性难题
- 批准号:
2743977 - 财政年份:2022
- 资助金额:
$ 221.74万 - 项目类别:
Studentship