Non-Gibbsianness and phase transition in complex systems

复杂系统中的非吉布斯性和相变

基本信息

  • 批准号:
    17540132
  • 负责人:
  • 金额:
    $ 1.98万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2005
  • 资助国家:
    日本
  • 起止时间:
    2005 至 2006
  • 项目状态:
    已结题

项目摘要

The main purpose of this project is to clarify typical reasons for phase transition and non-Gibbsianness of equilibrium measures in the context of complex systems. For this purpose, we first established large deviation properties for countable to one Markov systems associated with weak Gibbs measures for non-H"older potentials. We clarified a class of functions in which we can describe free energy function associated to weak Gibbs measures in terms of topological pressure. We established the level-2 upper large deviaition inequality and clarified sufficient conditions for the upper bounds being strictly negative. Furthermore, we studied multifractal large deviation laws for non-hyperbolic systems exhibiting 'intermittency'. In particular, the law is established for countable to one piecewise conformal Markov systems, which are derived systems constructed over hyperbolic regions. We formulated different stages of 'indifferency ' associated with potentials of weak bounded variation, and … More relate new characterization of phase transitions to indifferent periodic points at various stages. We also succeeded to associate non-differentiability of the Hausdorff dimension of level sets with phase transitions for intermittent systems. These results were established in [1]. The second purpose of this project is to describe dissipative phenomena via invertible extensions of non-invertible non-hyperbolic systems. We restrict our attention to countable to one sofic systems and established an explicit topological description of spaces of their invertible extensions under the existence of their dual systems. We also give a topological notion of ' reversibility ' of the invertible extensions. Then we discuss when Rohlin's invertible extension of ergodic absolutely continuous invariant measures are absolutely continuous with respect to a natural physical measure on the spaces that we constructed. We could observe that different nature of observability between original non- invertible systems and their dual systems causes dissipative phenomena in their invertible extensions. Those results are obtained in [4]. The third purpose of this project is to introduce thermodynamic methods to study conformal measures for families of partially defined maps on compact metric spaces which is called a ' dynamical family '. In particular, we could develop some aspects of thermodynamic formalism for countable to one sofic systems. Those results will appear in a joint paper with M.Denker (Gottingen Univ.). Less
该项目的主要目的是阐明复杂系统中相变和平衡测度的非吉布斯性的典型原因。为此,我们首先建立了与弱吉布斯测度相关的可数马尔可夫系统的大偏差属性。我们阐明了一类函数,可以在拓扑压力方面描述与弱吉布斯测度相关的自由能函数。我们建立了二级上大偏差不等式,并阐明了此外,我们研究了表现出“间歇性”的非双曲系统的多重分形大偏差定律,特别是为可数分段共形马尔可夫系统建立了该定律,该系统是在双曲区域上构造的派生系统。制定了与弱有界变化势相关的“无差异”的不同阶段,并将相变的新特征与不同阶段的无差异周期点联系起来。该项目的第二个目的是通过不可逆非双曲系统的可逆扩展来描述耗散现象。并在其对偶系统的存在下建立了其可逆扩张的空间的明确拓扑描述,我们还给出了可逆扩张的“可逆性”的拓扑概念。我们讨论了罗林的遍历绝对连续不变测度的可逆扩展相对于我们构建的空间上的自然物理测度是绝对连续的。我们可以观察到原始不可逆系统及其对偶系统之间可观测性的不同性质会导致耗散现象。这些结果在[4]中获得,该项目的第三个目的是引入热力学方法来研究紧度量空间上的部分定义映射族的共形测度,称为“特别是,我们可以开发可数于一个 sofic 系统的热力学形式主义的某些方面,这些结果将出现在与 M.Denker(哥廷根大学)的联合论文中。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Phase transition, Non-Gibbsianness and Subexponential Instability
相变、非吉布斯性和次指数不稳定性
Large Deviations for Countable to One Markov Systems
Non-Gibbsianness of SRB measures for the natural extension of Intermittent systems
间歇系统自然扩展的 SRB 测量的非吉布斯性
Nonequilibrium steady states arising from number theory
数论产生的非平衡稳态
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Sakaguchi;Y. Ohtsubo;Yoshio Ohtsubo;Y. Ohtsubo;大坪 義夫;大坪 義夫;Y. Ohtsubo;Y. Ohtsubo;Y. Ohtsubo;Michiko Yuri
  • 通讯作者:
    Michiko Yuri
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

YURI Michiko其他文献

YURI Michiko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('YURI Michiko', 18)}}的其他基金

Statistical properties of nonstationary weak Gibbs states and analysis of dissipative phenomena for those invertible extensions
非平稳弱吉布斯态的统计特性和可逆外延的耗散现象分析
  • 批准号:
    21340018
  • 财政年份:
    2009
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
An analysis of dissipative phenomena and intermittency in complex systems via a generalized variational principle
通过广义变分原理分析复杂系统中的耗散现象和间歇性
  • 批准号:
    19540109
  • 财政年份:
    2007
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Statistical properties of complex systems with subexponetnatial instability and phase transition
具有次指数不稳定和相变的复杂系统的统计特性
  • 批准号:
    15540135
  • 财政年份:
    2003
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Statistical properties of weak Gibbs measures for complex systems with nonhyperbolic periodic orbits
非双曲周期轨道复杂系统弱吉布斯测度的统计特性
  • 批准号:
    13640133
  • 财政年份:
    2001
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Statistical properties of equilibrium states for complex systems
复杂系统平衡状态的统计特性
  • 批准号:
    11640134
  • 财政年份:
    1999
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
On statistical properties for nonlinear nonhyperbolic systems
非线性非双曲系统的统计特性
  • 批准号:
    09640289
  • 财政年份:
    1997
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似国自然基金

TFEB介导自噬调控Nrf2核转位在间歇性低氧认知损害中的作用及机制
  • 批准号:
    82301672
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于PYCR1/CREB1探究慢性间歇性低氧改变血管通透性和促进肿瘤转移的机制
  • 批准号:
    82370087
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
间歇性列车荷载作用下路基填料变形特性及计算模型研究
  • 批准号:
    52308335
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
间歇性缺氧重编程肝脏巨噬细胞通过IL-6/NLRP3/GPX4信号诱导NAFLD肝损伤的机制研究
  • 批准号:
    82371135
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
超级增强子驱动AHCY高表达参与HNF4α-PPARγ调控网络在间歇性禁食改善NAFLD中的作用机制
  • 批准号:
    82370904
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345581
  • 财政年份:
    2024
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345582
  • 财政年份:
    2024
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345583
  • 财政年份:
    2024
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Standard Grant
Turbulence Intermittency for Cloud Physics (TITCHY)
云物理的湍流间歇性 (TITCHY)
  • 批准号:
    EP/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Research Grant
CAREER: Intermittency and Two-Fluid Transitions in Pulsed-Power-Driven Magnetized Turbulence
职业:脉冲功率驱动磁化湍流中的间歇性和二流体转变
  • 批准号:
    2339326
  • 财政年份:
    2023
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了