Statistical properties of equilibrium states for complex systems

复杂系统平衡状态的统计特性

基本信息

  • 批准号:
    11640134
  • 负责人:
  • 金额:
    $ 1.6万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1999
  • 资助国家:
    日本
  • 起止时间:
    1999 至 2000
  • 项目状态:
    已结题

项目摘要

(1999)One of purposes of the project in 1999 is to clarify sufficient conditions for the existence of conformal measures for countable to one piecewise invertible Markov systems. About this problem, Prof.M.Denker gave valuable advices during his stay in Sapporo so that I could establish a new method for the construction of conformal measures which is based on the existence of a derived map T^* (Schweiger's jump transformation) which is uniformly expanding and guarantees a weak Holder-type property of the potential φ^* associated to φ. The result is contained in (3) which is a joint paper with M.Denker. Another purpose of the project is to establish bounds on decay of correlation functions for noninvertible maps with indifferent periodic points. I could obtained polynomial bounds by applying Liverani's method based on random parturbations of Perron-Frobenius operators and by estimating order of divergence of invariant densities near indifferent periodic points which was established in (1). The result is containaed in (4) which is a joint paper with M.Pollicott.(2000)In the second year project, I studied meromorphic properties of dynamical zeta functions for noninvertible maps with indifferent periodic points. I could clarify the meromorpic dmeain of the zeta functions by observing a good relation between the topological pressure for φ and the topological pressure associated to φ^* with respect to the jump transformation T^*. The result is contained in (5) which is a joint paper with M.Pollicott. Furthermore, I could improve the results on the rates of decay of correlations in (4) by clarifying the speed of uniform convergence of iterated Perron-Frobenius operators on compact sets excluding indifferent periodic points. The result is contained in (6).
(1999) 1999年该项目的目的之一是阐明可数分段可逆马尔可夫系统保形测度存在的充分条件,M.Denker教授在札幌逗留期间对此问题提出了宝贵的建议。我可以建立一种新的共形测度构造方法,该方法基于导出映射 T^*(施威格跳跃变换)的存在,该映射均匀扩展并保证弱与 φ 相关的势 φ^* 的持有者类型属性结果包含在与 M.Denker 的联合论文中。该项目的另一个目的是建立不可逆映射的相关函数衰减的界限。我可以通过应用基于 Perron-Frobenius 算子的随机parturbations的Liverani方法并通过估计无差异周期点附近的不变密度的散度阶来获得多项式界限。 (1) 中建立的点的结果包含在 (4) 中,这是与 M.Pollicott 的联合论文。(2000) 在第二年的项目中,我研究了具有无差异周期的不可逆映射的动态 zeta 函数的亚纯性质。我可以通过观察 φ 的拓扑压力和与 φ^* 相关的拓扑压力之间的良好关系来阐明 zeta 函数的亚形态特征。跳跃变换 T^* 的结果包含在(5)中,这是与 M.Pollicott 的联合论文。此外,我可以通过阐明均匀收敛的速度来改进(4)中相关性衰减率的结果。在排除无关周期点的紧集上迭代 Perron-Frobenius 算子 结果包含在 (6) 中。

项目成果

期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Michiko Yuri: "Weak Gibbs measures for certain non-hyperbolic systems"Ergodic Theory and Dynamical Systems. Volume20. 1495-1518 (2000)
Michiko Yuri:“某些非双曲系统的弱吉布斯测度”遍历理论和动力系统。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Michiko Yuri: "Weak Gibbs measures for certain nonhyperbolic systems"Ergodic theory and Dynamical Systems. Volume20. 1495-1518 (2000)
Michiko Yuri:“某些非双曲系统的弱吉布斯测度”遍历理论和动力系统。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M.Denker and M.Yuri: "A note on the construction of nonsingular Gibbs measures."Colloquium Mathematicum. 84/85. 377-383 (2000)
M.Denker 和 M.Yuri:“关于构造非奇异吉布斯测度的说明。”数学研讨会。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Michiko Yuri: "Thermodynamic formalism for certain nonhyperbolic maps."Ergodic Theory and Dynamicul Systems. Volume19. 1365-1378 (1999)
Michiko Yuri:“某些非双曲映射的热力学形式主义。”遍历理论和动力系统。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M.Pallicott and M.Yuri: "Regularity of solutions to the measurable Livsic equation"Transactions of the American Mathematical Society. Volume351 Namber2. 559-568 (1999)
M.Pallicott 和 M.Yuri:“可测 Livsic 方程解的正则性”美国数学会汇刊。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

YURI Michiko其他文献

YURI Michiko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('YURI Michiko', 18)}}的其他基金

Statistical properties of nonstationary weak Gibbs states and analysis of dissipative phenomena for those invertible extensions
非平稳弱吉布斯态的统计特性和可逆外延的耗散现象分析
  • 批准号:
    21340018
  • 财政年份:
    2009
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
An analysis of dissipative phenomena and intermittency in complex systems via a generalized variational principle
通过广义变分原理分析复杂系统中的耗散现象和间歇性
  • 批准号:
    19540109
  • 财政年份:
    2007
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Non-Gibbsianness and phase transition in complex systems
复杂系统中的非吉布斯性和相变
  • 批准号:
    17540132
  • 财政年份:
    2005
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Statistical properties of complex systems with subexponetnatial instability and phase transition
具有次指数不稳定和相变的复杂系统的统计特性
  • 批准号:
    15540135
  • 财政年份:
    2003
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Statistical properties of weak Gibbs measures for complex systems with nonhyperbolic periodic orbits
非双曲周期轨道复杂系统弱吉布斯测度的统计特性
  • 批准号:
    13640133
  • 财政年份:
    2001
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
On statistical properties for nonlinear nonhyperbolic systems
非线性非双曲系统的统计特性
  • 批准号:
    09640289
  • 财政年份:
    1997
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似国自然基金

TFEB介导自噬调控Nrf2核转位在间歇性低氧认知损害中的作用及机制
  • 批准号:
    82301672
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于PYCR1/CREB1探究慢性间歇性低氧改变血管通透性和促进肿瘤转移的机制
  • 批准号:
    82370087
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
间歇性列车荷载作用下路基填料变形特性及计算模型研究
  • 批准号:
    52308335
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
间歇性缺氧重编程肝脏巨噬细胞通过IL-6/NLRP3/GPX4信号诱导NAFLD肝损伤的机制研究
  • 批准号:
    82371135
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
超级增强子驱动AHCY高表达参与HNF4α-PPARγ调控网络在间歇性禁食改善NAFLD中的作用机制
  • 批准号:
    82370904
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345581
  • 财政年份:
    2024
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345582
  • 财政年份:
    2024
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345583
  • 财政年份:
    2024
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Standard Grant
Turbulence Intermittency for Cloud Physics (TITCHY)
云物理的湍流间歇性 (TITCHY)
  • 批准号:
    EP/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Research Grant
CAREER: Intermittency and Two-Fluid Transitions in Pulsed-Power-Driven Magnetized Turbulence
职业:脉冲功率驱动磁化湍流中的间歇性和二流体转变
  • 批准号:
    2339326
  • 财政年份:
    2023
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了