Generalized boson algebras : their properties and applications to mathematics and physics
广义玻色子代数:它们的性质及其在数学和物理中的应用
基本信息
- 批准号:15540132
- 负责人:
- 金额:$ 2.05万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2005
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The purposes of this research project are three fold. Firstly, seeking possibilities of generalizing the boson algebra in the framework of Hopf algebra. Secondly, investigating properties of the generalized boson algebras. Then, applying the generalized boson algebras to some mathematical or physical problems. One of the generalized boson algebras, already known, is regarded as bosonization of the quantum algebra U_q[osp(1/2)]. We, thus, started our investigation with the algebra (denoted by U) and U_q[osp(1/2)]. The main results of the present research are summarized as follows.1.The algebra dual to U was obtained. The duality is expressed in the form of universal T-matrix.2.The single-particle and bipartite coherent states for U were constructed. It was shown that the bipartite coherent state had entanglement which disappears in the classical limit. An analytic proof of orthogonality and completeness for the single-particle coherent state was given.3.Irreducible representations of th … More e algebra dual to U were obtained explicitly and it was shown that the representation matrices are related to little q-Jacobi polynomials.4.Tensor product of the representations of U is decomposed into irreducible ones. It was shown that the decomposition was carried out with q-Hahn polynomials. The result No.3 and 4 imply that the algebra U gives a new algebraic background for basic hypergeometri functions.5.A general method for constructing noncommutative space with supersymmetric nature, which means that the space is covariant under the action of quantum group OSp_q(1/2), was introduced. By the method, 3-dimensional noncommutative flat superspace and 5-dimensional noncommutative supersphere were constructed and their properties, as well as relations to boson algebras, were studied.6.Differential geometry on noncommutative spaces has been developed by Dubois-Viollete et al. In this research, the geometry was extended to noncommutative superspaces. As an example, covariant derivative, curvature etc on 3-dimensional noncommutative superspace, which is a covariant algebra of the Jordanian quantum group OSp_h(1/2), were computed. The computation shows that the superspace is not physical, since the covariant derivative is not compatible with the metric. Less
该研究项目的目的是三倍。首先,寻求在霍普夫代数框架内概括玻色族代数的可能性。其次,研究广义玻色子代数的特性。然后,将广义的玻色子代数应用于一些数学或物理问题。已知的广义玻色子代数之一被认为是量子代数U_Q [OSP(1/2)]的玻殖化。因此,我们开始对代数(由U)和U_Q [OSP(1/2)]进行调查。本研究的主要结果总结如下。1。获得了u的代数双重。二元性以通用t矩阵的形式表示。结果表明,两部分相干状态具有纠缠,在经典极限内消失。给出了单粒子相干状态的正交性和完整性的分析证明。3.TH的可误差表示,您对U的d dual dual dual dual to t dual a dial complicial carliciental complicity cartical.4.temantiagations complications a表示条件与Q-Jacobi多项式很小有关。4。u decomptiations u decompentions u decomptiations u decompenting u decompents u decompents u decomposity。结果表明,分解是用Q-HAHN多项式进行的。第3和4号的结果表明,代数U给出了基本超切函数的新代数背景。5.一种用于构造具有超对称性质的非交通空间的通用方法,这意味着该空间在量子组OSP_Q(1/2)的作用下是协变量的。通过该方法,构建了三维非公平式扁平超空间和5维非交通性超球,其特性以及与波森代数的关系是研究。6。dubois-viollete et al and deffentiod.6。在这项研究中,几何形状扩展到非交通超级空间。例如,计算了3维非交通式超空间上的协变量,曲率等,这是约旦量子组OSP_H(1/2)的协变量代数。该计算表明超空间不是物理空间,因为协变量导数与度量不兼容。较少的
项目成果
期刊论文数量(51)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Confidence regions for the mean direction of the von Mises-Fisher distribution
von Mises-Fisher 分布平均方向的置信区域
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:Y.Watamori;T.Fujioka
- 通讯作者:T.Fujioka
Coring structures associated with multip licative unitary operators on Hilbert C^*-modules
与希尔伯特 C^* 模上的乘法酉算子相关的核心结构
- DOI:
- 发表时间:2003
- 期刊:
- 影响因子:0
- 作者:Y.Watamori;T.Fujioka;M.O'uchi;Kouyemon Iriye;M.O'uchi
- 通讯作者:M.O'uchi
Generalized boson algebra and its entangled bipartite coherent states
广义玻色子代数及其纠缠二部相干态
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:N.Aizawa;R.Chakrabarti;J.Segar
- 通讯作者:J.Segar
Noncommutative geometry of super-Jordanian OSp_h(2/1) covariant quantum space
超乔丹OSp_h(2/1)协变量子空间的非交换几何
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:N.Aizawa;R.Chakrabarti
- 通讯作者:R.Chakrabarti
Coring structures on a Hilbert C^*-module of compact operators
紧凑算子的 Hilbert C^* 模块上的核心结构
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Y.Watamori;T.Fujioka;M.O'uchi
- 通讯作者:M.O'uchi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
AIZAWA Naruhiko其他文献
AIZAWA Naruhiko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('AIZAWA Naruhiko', 18)}}的其他基金
Representation theories of conformal Galilei algebras and their applications to orthogonal polynomials and quantum many-body systems
共形伽利略代数表示论及其在正交多项式和量子多体系统中的应用
- 批准号:
23540154 - 财政年份:2011
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Supersymmetric noncommutative geometry and quantum physics
超对称非交换几何和量子物理
- 批准号:
18540380 - 财政年份:2006
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似国自然基金
塔代数的表示理论及相关Hopf代数
- 批准号:11701339
- 批准年份:2017
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
Hopf代数胚上的扩张的表示理论
- 批准号:11401522
- 批准年份:2014
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
Hopf代数的同调与表示理论
- 批准号:10726039
- 批准年份:2007
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
结合代数的Quiver刻划和Hopf代数表示型分类以及与量子群理论的联系
- 批准号:10571153
- 批准年份:2005
- 资助金额:25.0 万元
- 项目类别:面上项目
非交换代数的Hopf-Galois理论及其表示论
- 批准号:10126002
- 批准年份:2001
- 资助金额:2.0 万元
- 项目类别:数学天元基金项目
相似海外基金
5角関係式を用いた3次元多様体の量子不変量
使用五边形关系的 3 维流形的量子不变量
- 批准号:
22KJ0242 - 财政年份:2023
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Resolutions of positivity in Hopf algebras
Hopf 代数中正性的解析
- 批准号:
RGPIN-2020-04230 - 财政年份:2022
- 资助金额:
$ 2.05万 - 项目类别:
Discovery Grants Program - Individual
Topological Hopf Algebras and Their cyclic cohomology
拓扑 Hopf 代数及其循环上同调
- 批准号:
RGPIN-2018-04039 - 财政年份:2022
- 资助金额:
$ 2.05万 - 项目类别:
Discovery Grants Program - Individual
Hopf algebras, combinatorics, and operator theory
Hopf 代数、组合数学和算子理论
- 批准号:
RGPIN-2019-05075 - 财政年份:2022
- 资助金额:
$ 2.05万 - 项目类别:
Discovery Grants Program - Individual
Combinatorial Hopf Algebras and Applications
组合 Hopf 代数及其应用
- 批准号:
RGPIN-2018-05821 - 财政年份:2022
- 资助金额:
$ 2.05万 - 项目类别:
Discovery Grants Program - Individual