Resolutions of positivity in Hopf algebras
Hopf 代数中正性的解析
基本信息
- 批准号:RGPIN-2020-04230
- 负责人:
- 金额:$ 2.26万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A central theme in mathematics is positivity: to explain the occurrence of positive numbers, especially when they are integers. This is because it often indicates an underlying structure explaining a phenomenon in the real world or other sciences such as computer science or quantum physics. Conversely, facets of an underlying structure can be calculated explicitly using a combinatorial rule where abstract objects are counted to give positive integers. In my research area of algebraic combinatorics, with new directions of theory, a number of long-standing positivity problems have recently been resolved. Hence now is the ideal time to attack some of the remaining ones. I will work towards resolving 3 of these. 1) Positivity in Schubert Calculus: Find a combinatorial rule for multiplying together two Schubert polynomials. These polynomials were introduced by Lascoux-Schutzenberger in 1982. 2) Positivity in chromatic symmetric functions: Prove that for certain claw-free graphs, the generalization of the chromatic polynomial, called the chromatic symmetric function, is a positive linear combination of elementary symmetric functions, as conjectured by Stanley-Stembridge in 1993. 3) Positivity in the space of diagonal harmonics: Find a combinatorial rule in terms of Schur functions for the bigraded Frobenius characteristic of the space of diagonal harmonics, introduced by Garsia-Haiman in the early 1990s. This will be achieved through a combination of investigating and applying under-explored tools and functions, such as fundamental slide polynomials, and forging and applying new areas of research, such as my discovery of quasisymmetric Schur functions with Haglund-Luoto-Mason. Junior researchers will be involved in all aspects of all of the projects from generating data in SAGE and Maple, to data analysis and forming conjectures, to proving results, and disseminating them with articles and talks. This will give them valuable training, and impactful research on which to found their careers. Solving any of these 3 problems would have major significance in my field, as they are all active areas of research. At a general scientific level, the resolutions will also impact related fields involving the underlying structures, such as string theory (related to Schubert polynomials through quantization), or the Clay Millennium Problem of resolving P vs NP (related to Schur functions through Geometric Complexity Theory). At a global level the resolutions of these 3 problems will further reinforce Canada's position at the global forefront of combinatorics, following such pioneers as Robinson and Tutte, and attracting attention and talent from around the world.
数学的中心主题是正性:解释正数的出现,尤其是当它们是整数时。这是因为它通常表明解释现实世界或其他科学(例如计算机科学或量子物理学)中的现象的底层结构。相反,可以使用组合规则显式计算底层结构的方面,其中对抽象对象进行计数以给出正整数。在我的代数组合学研究领域,随着新的理论方向,一些长期存在的实证性问题最近得到了解决。因此,现在是攻击剩下的一些的理想时机。我将努力解决其中的三个问题。 1) 舒伯特微积分中的正性:找到将两个舒伯特多项式相乘的组合规则。这些多项式由Lascoux-Schutzenberger于1982年提出。 2)色对称函数中的正性:证明对于某些无爪图,色多项式的推广,称为色对称函数,是初等对称函数的正线性组合,正如 Stanley-Stembridge 在 1993 年猜想的那样。 3) 对角谐波空间中的正性:找到一个对角调和空间的二阶 Frobenius 特征的 Schur 函数的组合规则,由 Garsia-Haiman 在 20 世纪 90 年代初引入。这将通过结合研究和应用尚未探索的工具和函数(例如基本滑动多项式)以及开拓和应用新的研究领域(例如我与 Haglund-Luoto-Mason 发现的拟对称 Schur 函数)来实现。初级研究人员将参与所有项目的各个方面,从在 SAGE 和 Maple 中生成数据,到数据分析和形成猜想,到证明结果,并通过文章和演讲传播它们。这将为他们提供宝贵的培训和有影响力的研究,为他们的职业生涯奠定基础。解决这三个问题中的任何一个对我的领域都具有重大意义,因为它们都是活跃的研究领域。在一般科学层面,这些决议还将影响涉及基础结构的相关领域,例如弦理论(通过量化与舒伯特多项式相关),或解决 P 与 NP 的克莱千年问题(通过几何复杂性理论与舒尔函数相关) )。在全球范围内,这三个问题的解决将进一步巩固加拿大在组合数学领域的全球前沿地位,追随罗宾逊和图特等先驱,并吸引世界各地的关注和人才。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
vanWilligenburg, Stephanie其他文献
vanWilligenburg, Stephanie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('vanWilligenburg, Stephanie', 18)}}的其他基金
Resolutions of positivity in Hopf algebras
Hopf 代数中正性的解析
- 批准号:
RGPIN-2020-04230 - 财政年份:2021
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Resolutions of positivity in Hopf algebras
Hopf 代数中正性的解析
- 批准号:
RGPIN-2020-04230 - 财政年份:2020
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Generalizations of Schur functions
Schur 函数的推广
- 批准号:
RGPIN-2015-03915 - 财政年份:2018
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Generalizations of Schur functions
Schur 函数的推广
- 批准号:
RGPIN-2015-03915 - 财政年份:2017
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Generalizations of Schur functions
Schur 函数的推广
- 批准号:
RGPIN-2015-03915 - 财政年份:2016
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Generalizations of Schur functions
Schur 函数的推广
- 批准号:
RGPIN-2015-03915 - 财政年份:2015
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
为什么林权改革后林农森林经营积极性普遍不高——基于风险和时间偏好的视角
- 批准号:71803050
- 批准年份:2018
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
深化集体林权制度改革政策对农户营林积极性的影响与政策完善研究——以江西为例
- 批准号:71263021
- 批准年份:2012
- 资助金额:36.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Combinatorics of Total Positivity: Amplituhedra and Braid Varieties
总正性的组合:幅面体和辫子品种
- 批准号:
2349015 - 财政年份:2024
- 资助金额:
$ 2.26万 - 项目类别:
Standard Grant
Analytical properties of standard subspaces and reflection positivity in AQFT
AQFT 中标准子空间的分析性质和反射正性
- 批准号:
22KF0082 - 财政年份:2023
- 资助金额:
$ 2.26万 - 项目类别:
Grant-in-Aid for JSPS Fellows
The Alzheimer's Disease Tau Platform Clinical Trial
阿尔茨海默病 Tau 平台临床试验
- 批准号:
10655872 - 财政年份:2023
- 资助金额:
$ 2.26万 - 项目类别:
Decoding Age Differences in Emotional Well-being and Positivity through Everyday Natural Conversations
通过日常自然对话解读情绪健康和积极性的年龄差异
- 批准号:
10667001 - 财政年份:2023
- 资助金额:
$ 2.26万 - 项目类别:
Positivity and vanishing theorems of direct image of relative canonical bundle
相关正则丛直像的正定理和消失定理
- 批准号:
23KJ0673 - 财政年份:2023
- 资助金额:
$ 2.26万 - 项目类别:
Grant-in-Aid for JSPS Fellows