A Study of Blow-up Problems and Singular Perturbation Problems arisingin Mathematical Fluid Mechanics
数学流体力学中的爆炸问题和奇异摄动问题的研究
基本信息
- 批准号:17204008
- 负责人:
- 金额:$ 14.39万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (A)
- 财政年份:2005
- 资助国家:日本
- 起止时间:2005 至 2007
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The most notable outcome of the present grant-in-aid is to have established a proposition that a nonlinear convection term in the Navier-Stokes equations and related equations can prevent solutions from blowing up. We also explored De Gregorio's equation and the Proudman-Johnson equation to find that they are rich sources of blow-up problems. Besides, those blow-up problems turned out to be treated in a unified way. Many theorem were proved for these equations, but the following is the most significant : solutions of the Proudman-Johnson equation do not blow up if the parameter in it is small enough.Together with C.-H. Cho, Okamoto investigated finite difference schemes for a semi-linear parabolic equation which admits blow-up. Schemes of Nakagawa type were studied and we proved not only that the finite difference solution converges to the true solution while the true solution is smooth, but also that the numerical blow-up time converges to the true blow-up time. A generalization to nonlinear wave equations is in progress.Ooura made a significant improvement on one-dimensional quadrature rule of IMT type and proved mathematically that their performance is as good as DE rule if a certain parameter tuning is made.Matsuo invented discrete variational method, which enables us to derive a finite difference/element method preserving conservation quantities, and applied it to the Camassa-Holm equation.
当前赠款中最值得注意的结果是建立一个主张,即Navier-Stokes方程和相关方程中的非线性对流术语可以防止解决方案爆炸。我们还探索了De Gregorio的方程式和Proudman-Johnson方程,发现它们是爆炸问题的丰富来源。此外,这些爆炸问题被证明是以统一的方式进行的。这些方程式证明了许多定理,但是以下是最重要的:如果其中的参数足够小。 Cho,Okamoto调查了一个半线性抛物线方程的有限差方方案,该方程接受了爆炸。研究了中川类型的方案,我们不仅证明了有限差解决方案在真实解决方案时会收敛到真实解决方案,而且还证明了数值爆破的时间会收敛到真实的爆破时间。 A generalization to nonlinear wave equations is in progress.Ooura made a significant improvement on one-dimensional quadrature rule of IMT type and proved mathematically that their performance is as good as DE rule if a certain parameter tuning is made.Matsuo invented discrete variational method, which enables us to derive a finite difference/element method preserving conservation quantities, and applied it to the Camassa-Holm equation.
项目成果
期刊论文数量(48)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A remark on continuous nowhere differentiable functions
关于连续无处可微函数的评论
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:Takayasu;Matsuo;岡本 久
- 通讯作者:岡本 久
A remark on continuous, nowhere differentiable functions
关于连续无处可微函数的评论
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:Takamuro;H.;H.Okamoto;D. H. Ryu.;H.Okamoto
- 通讯作者:H.Okamoto
A geometric construction of continuous, strictly increasing singular functions
连续、严格递增奇异函数的几何构造
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:H.Okamoto with C.-H. Cho;S. Hamada;簡施 儀;H. Okamoto with M. Wunsch
- 通讯作者:H. Okamoto with M. Wunsch
An IMT-type quadrature formula with the same asymptotic performance as the DE formula
与DE公式具有相同渐近性能的IMT型求积公式
- DOI:
- 发表时间:2008
- 期刊:
- 影响因子:0
- 作者:Xian WANG;Hiroyuki HIRANO;Toshio TAGAWA;Hiroyuki OZOE;T. Ooura
- 通讯作者:T. Ooura
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
OKAMOTO Hisashi其他文献
OKAMOTO Hisashi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('OKAMOTO Hisashi', 18)}}的其他基金
Applied Analysis on the Navier-Stokes Equations and Related Dynamical Systems
纳维-斯托克斯方程及相关动力系统的应用分析
- 批准号:
20244006 - 财政年份:2008
- 资助金额:
$ 14.39万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Applications of the dynamical systems theory and the singularity theory to mathematical fluid mechanics
动力系统理论和奇点理论在数学流体力学中的应用
- 批准号:
14204007 - 财政年份:2002
- 资助金额:
$ 14.39万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Application of the double exponential transform to integral transformations
双指数变换在积分变换中的应用
- 批准号:
11554002 - 财政年份:1999
- 资助金额:
$ 14.39万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Studies on singular perturbation problems in nonlinear mechanics
非线性力学奇异摄动问题的研究
- 批准号:
11304005 - 财政年份:1999
- 资助金额:
$ 14.39万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Mathematical Open Problems of the Navier-Stokes Equations
纳维-斯托克斯方程的数学开放问题
- 批准号:
09304023 - 财政年份:1997
- 资助金额:
$ 14.39万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
On the research and development of fast solvers arising in scientific computation
科学计算中快速求解器的研究与开发
- 批准号:
09554003 - 财政年份:1997
- 资助金额:
$ 14.39万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mathematical analysis and numerical computation of nonlinear partial differential equations
非线性偏微分方程的数学分析与数值计算
- 批准号:
08454028 - 财政年份:1996
- 资助金额:
$ 14.39万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Studies on mathematical analysis and numerical computation of the Nevier-Stokes equations
内维-斯托克斯方程的数学分析与数值计算研究
- 批准号:
07304019 - 财政年份:1995
- 资助金额:
$ 14.39万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
相似国自然基金
磁性薄膜和磁性纳米结构中的自旋动力学研究
- 批准号:11174131
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
北太平洋中低纬度温跃层、涡流动力学问题的研究
- 批准号:49576282
- 批准年份:1995
- 资助金额:9.0 万元
- 项目类别:面上项目
相似海外基金
Experimental investigation of the effects of background system rotation on the flow dynamics of circular vortex rings and non-circular vortex loops
背景系统旋转对圆形涡环和非圆形涡环流动动力学影响的实验研究
- 批准号:
2871822 - 财政年份:2023
- 资助金额:
$ 14.39万 - 项目类别:
Studentship
Effects of inflow perturbations on the energy transfer and wake vortex dynamics of a 2-DOF cylinder undergoing vortex-induced vibration near a plane boundary in turbulent flows
流入扰动对在湍流中平面边界附近经历涡激振动的 2 自由度圆柱体的能量传递和尾涡动力学的影响
- 批准号:
569540-2022 - 财政年份:2022
- 资助金额:
$ 14.39万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Topics in Vortex Dynamics: Extreme Events, Optimal Closures and New Equilibrium Solutions
涡动力学主题:极端事件、最优闭合和新的平衡解
- 批准号:
RGPIN-2020-05710 - 财政年份:2022
- 资助金额:
$ 14.39万 - 项目类别:
Discovery Grants Program - Individual
Dynamics and scattering of vortices and vortex rings
涡流和涡环的动力学和散射
- 批准号:
2206016 - 财政年份:2022
- 资助金额:
$ 14.39万 - 项目类别:
Standard Grant
Experimental analysis of vortex-ring dynamics in dense suspensions to enhance the power density and efficiency of redox flow batteries
稠密悬浮液中涡环动力学的实验分析,以提高氧化还原液流电池的功率密度和效率
- 批准号:
546606-2020 - 财政年份:2022
- 资助金额:
$ 14.39万 - 项目类别:
Postgraduate Scholarships - Doctoral