Topics in Vortex Dynamics: Extreme Events, Optimal Closures and New Equilibrium Solutions
涡动力学主题:极端事件、最优闭合和新的平衡解
基本信息
- 批准号:RGPIN-2020-05710
- 负责人:
- 金额:$ 3.13万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The long-term objective of my research program is to provide answers to classical and emerging open questions in the area of theoretical fluid dynamics. Even though the mathematical models on which fluid mechanics is based were introduced nearly two centuries ago, many of their fundamental properties are still to be fully understood. As a first objective, we will carry out a systematic search for singular behavior in flows of incompressible fluids governed by the Navier-Stokes equation. Recognized by the Clay Mathematical Institute as one of its "Millennium Problems", the question of the finite-time singularity formation is one of the central problems in mathematical fluid mechanics. While this is a problem in mathematical analysis, we will cast a new light on it by methodically finding solutions exhibiting the most extreme behavior in order to understand whether such behavior may lead to singularity formation. A key novelty of our approach is that such extreme flows will be sought systematically via numerical solution of suitable variational optimization problems. The second class of open questions is motivated by the development of simplified models for turbulent flows. Given the multiscale complexity exhibited by such flows, their complete resolution in numerical computations will always be a challenge and some form of approximation is needed to represent unresolved dynamics. While most of the work on this so-called "closure problem" to date has relied on purely empirical approaches, we will look for mathematically optimal solutions. In addition to offering an new way to design such closure strategies, our work will answer questions about their fundamental performance limitations. Finally, we will study problems in classical vortex dynamics where we will seek to discover new families of equilibrium solutions and explore their stability properties. This effort will fill important gaps in theoretical hydrodynamics and will also provide insights about the behavior of vortex rings ubiquitous in various technological and biological applications. While numerical optimization is widely used to solve practical problems, here it will be employed to shed light on the inner workings of the mathematical models of fluid flow. Many of our research questions are specifically framed to provide new insights beyond what can be established with rigorous analysis, such that these insights will point to the direction in which the mathematical analysis can be extended and sharpened. Given the interdisciplinary nature of this program, the proposed research and training will integrate methods from theoretical fluid mechanics, applied and numerical analysis, optimization and control, as well as large-scale scientific computing. In the long term our findings will have impact on various fields where fluid dynamics plays an important role, such as mechanical and chemical engineering, atmospheric and environmental science as well as numerical weather prediction.
我的研究计划的长期目标是为理论动力学领域的古典和新兴的开放问题提供答案。即使在将近两个世纪前引入了基于流体力学的数学模型,但其许多基本属性仍待完全了解。 作为第一个目标,我们将系统地搜索由Navier-Stokes方程控制的不可压缩流体的流动。被粘土数学研究所认为是其“千年问题”之一,有限的奇异性形成的问题是数学流体力学的核心问题之一。尽管这是数学分析中的一个问题,但我们将通过有条不紊地找到表现出最极端行为的解决方案来了解这种行为是否会导致奇异性形成,从而对其进行新的启示。我们方法的主要新颖性是,将通过合适的变分优化问题的数值解决方案系统地寻求这种极端流。 第二类开放问题是由开发简化湍流模型的动机。鉴于此类流量表现出的多尺度复杂性,它们在数值计算中的完整分辨率将永远是一个挑战,并且需要某种形式的近似值来表示未解决的动力学。尽管迄今为止,大多数所谓的“封闭问题”的工作都依赖于纯粹的经验方法,但我们将寻找数学上最佳的解决方案。除了提供一种设计这种封闭策略的新方法外,我们的工作还将回答有关其基本绩效限制的问题。 最后,我们将研究经典涡流动力学中的问题,我们将寻求发现平衡解决方案的新家族并探索其稳定性。这项工作将填补理论流体动力学中的重要空白,还将提供有关在各种技术和生物学应用中无处不在的涡流行为的见解。虽然数值优化被广泛用于解决实际问题,但在这里,它将用于阐明流体流数学模型的内部工作。我们的许多研究问题都是专门构建的,可以提供超出严格分析可以建立的新见解,以便这些见解将指向可以扩展和锐化数学分析的方向。鉴于该计划的跨学科性质,拟议的研究和培训将整合理论流体力学,应用和数值分析,优化和控制以及大规模科学计算的方法。从长远来看,我们的发现将对流体动力学起着重要作用的各个领域产生影响,例如机械和化学工程,大气和环境科学以及数值天气预测。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
Protas, Bartosz其他文献
On maximum enstrophy growth in a hydrodynamic system
- DOI:10.1016/j.physd.2011.07.00310.1016/j.physd.2011.07.003
- 发表时间:2011-09-152011-09-15
- 期刊:
- 影响因子:4
- 作者:Ayala, Diego;Protas, BartoszAyala, Diego;Protas, Bartosz
- 通讯作者:Protas, BartoszProtas, Bartosz
Systematic search for extreme and singular behaviour in some fundamental models of fluid mechanics
- DOI:10.1098/rsta.2021.003510.1098/rsta.2021.0035
- 发表时间:2022-06-132022-06-13
- 期刊:
- 影响因子:5
- 作者:Protas, BartoszProtas, Bartosz
- 通讯作者:Protas, BartoszProtas, Bartosz
Accurate Characterization of Ion Transport Properties in Binary Symmetric Electrolytes Using In Situ NMR Imaging and Inverse Modeling
- DOI:10.1021/acs.jpcb.5b0430010.1021/acs.jpcb.5b04300
- 发表时间:2015-09-172015-09-17
- 期刊:
- 影响因子:3.3
- 作者:Sethurajan, Athinthra Krishnaswamy;Krachkoyskiy, Sergey A.;Protas, BartoszSethurajan, Athinthra Krishnaswamy;Krachkoyskiy, Sergey A.;Protas, Bartosz
- 通讯作者:Protas, BartoszProtas, Bartosz
Extreme vortex states and the growth of enstrophy in three-dimensional in compressible flows
- DOI:10.1017/jfm.2017.13610.1017/jfm.2017.136
- 发表时间:2017-05-102017-05-10
- 期刊:
- 影响因子:3.7
- 作者:Ayala, Diego;Protas, BartoszAyala, Diego;Protas, Bartosz
- 通讯作者:Protas, BartoszProtas, Bartosz
Maximum palinstrophy growth in 2D incompressible flows
- DOI:10.1017/jfm.2013.68510.1017/jfm.2013.685
- 发表时间:2014-03-012014-03-01
- 期刊:
- 影响因子:3.7
- 作者:Ayala, Diego;Protas, BartoszAyala, Diego;Protas, Bartosz
- 通讯作者:Protas, BartoszProtas, Bartosz
共 5 条
- 1
Protas, Bartosz的其他基金
Topics in Vortex Dynamics: Extreme Events, Optimal Closures and New Equilibrium Solutions
涡动力学主题:极端事件、最优闭合和新的平衡解
- 批准号:RGPIN-2020-05710RGPIN-2020-05710
- 财政年份:2021
- 资助金额:$ 3.13万$ 3.13万
- 项目类别:Discovery Grants Program - IndividualDiscovery Grants Program - Individual
Topics in Vortex Dynamics: Extreme Events, Optimal Closures and New Equilibrium Solutions
涡动力学主题:极端事件、最优闭合和新的平衡解
- 批准号:RGPIN-2020-05710RGPIN-2020-05710
- 财政年份:2020
- 资助金额:$ 3.13万$ 3.13万
- 项目类别:Discovery Grants Program - IndividualDiscovery Grants Program - Individual
Extreme Events and Optimal Closures in Fluid Mechanics
流体力学中的极端事件和最佳闭合
- 批准号:RGPIN-2014-04400RGPIN-2014-04400
- 财政年份:2019
- 资助金额:$ 3.13万$ 3.13万
- 项目类别:Discovery Grants Program - IndividualDiscovery Grants Program - Individual
Extreme Events and Optimal Closures in Fluid Mechanics
流体力学中的极端事件和最佳闭合
- 批准号:RGPIN-2014-04400RGPIN-2014-04400
- 财政年份:2017
- 资助金额:$ 3.13万$ 3.13万
- 项目类别:Discovery Grants Program - IndividualDiscovery Grants Program - Individual
Extreme Events and Optimal Closures in Fluid Mechanics
流体力学中的极端事件和最佳闭合
- 批准号:RGPIN-2014-04400RGPIN-2014-04400
- 财政年份:2016
- 资助金额:$ 3.13万$ 3.13万
- 项目类别:Discovery Grants Program - IndividualDiscovery Grants Program - Individual
Extreme Events and Optimal Closures in Fluid Mechanics
流体力学中的极端事件和最佳闭合
- 批准号:RGPIN-2014-04400RGPIN-2014-04400
- 财政年份:2015
- 资助金额:$ 3.13万$ 3.13万
- 项目类别:Discovery Grants Program - IndividualDiscovery Grants Program - Individual
Extreme Events and Optimal Closures in Fluid Mechanics
流体力学中的极端事件和最佳闭合
- 批准号:RGPIN-2014-04400RGPIN-2014-04400
- 财政年份:2014
- 资助金额:$ 3.13万$ 3.13万
- 项目类别:Discovery Grants Program - IndividualDiscovery Grants Program - Individual
Control and optimization problems in fluid mechanics
流体力学中的控制与优化问题
- 批准号:298430-2009298430-2009
- 财政年份:2013
- 资助金额:$ 3.13万$ 3.13万
- 项目类别:Discovery Grants Program - IndividualDiscovery Grants Program - Individual
Control and optimization problems in fluid mechanics
流体力学中的控制与优化问题
- 批准号:298430-2009298430-2009
- 财政年份:2012
- 资助金额:$ 3.13万$ 3.13万
- 项目类别:Discovery Grants Program - IndividualDiscovery Grants Program - Individual
Control and optimization problems in fluid mechanics
流体力学中的控制与优化问题
- 批准号:298430-2009298430-2009
- 财政年份:2011
- 资助金额:$ 3.13万$ 3.13万
- 项目类别:Discovery Grants Program - IndividualDiscovery Grants Program - Individual
相似国自然基金
旋涡流场中柱状泡的动力学特性研究
- 批准号:12172219
- 批准年份:2021
- 资助金额:62 万元
- 项目类别:面上项目
水面行走昆虫的动力学机理及其诱发三维涡流场的实验研究
- 批准号:
- 批准年份:2020
- 资助金额:62 万元
- 项目类别:面上项目
可控永磁涡流磁耦合传动轴系动力学特性及控制方法研究
- 批准号:11872006
- 批准年份:2018
- 资助金额:63.0 万元
- 项目类别:面上项目
粗糙壁面与自然对流相互作用驱动微流体流动的机理研究
- 批准号:11802023
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
开孔翼型涡流发生器诱导相干结构动力学特性的TRPIV研究
- 批准号:11802331
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Experimental investigation of the effects of background system rotation on the flow dynamics of circular vortex rings and non-circular vortex loops
背景系统旋转对圆形涡环和非圆形涡环流动动力学影响的实验研究
- 批准号:28718222871822
- 财政年份:2023
- 资助金额:$ 3.13万$ 3.13万
- 项目类别:StudentshipStudentship
Dynamics and scattering of vortices and vortex rings
涡流和涡环的动力学和散射
- 批准号:22060162206016
- 财政年份:2022
- 资助金额:$ 3.13万$ 3.13万
- 项目类别:Standard GrantStandard Grant
Effects of inflow perturbations on the energy transfer and wake vortex dynamics of a 2-DOF cylinder undergoing vortex-induced vibration near a plane boundary in turbulent flows
流入扰动对在湍流中平面边界附近经历涡激振动的 2 自由度圆柱体的能量传递和尾涡动力学的影响
- 批准号:569540-2022569540-2022
- 财政年份:2022
- 资助金额:$ 3.13万$ 3.13万
- 项目类别:Alexander Graham Bell Canada Graduate Scholarships - DoctoralAlexander Graham Bell Canada Graduate Scholarships - Doctoral
Experimental analysis of vortex-ring dynamics in dense suspensions to enhance the power density and efficiency of redox flow batteries
稠密悬浮液中涡环动力学的实验分析,以提高氧化还原液流电池的功率密度和效率
- 批准号:546606-2020546606-2020
- 财政年份:2022
- 资助金额:$ 3.13万$ 3.13万
- 项目类别:Postgraduate Scholarships - DoctoralPostgraduate Scholarships - Doctoral
Bi-stable vortex shedding dynamics in nominally two-dimensional wakes
名义二维尾流中的双稳态涡旋脱落动力学
- 批准号:574742-2022574742-2022
- 财政年份:2022
- 资助金额:$ 3.13万$ 3.13万
- 项目类别:University Undergraduate Student Research AwardsUniversity Undergraduate Student Research Awards