Mathematical Open Problems of the Navier-Stokes Equations
纳维-斯托克斯方程的数学开放问题
基本信息
- 批准号:09304023
- 负责人:
- 金额:$ 13.57万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (A)
- 财政年份:1997
- 资助国家:日本
- 起止时间:1997 至 1998
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Progress is made in the study of the Navier-Stokes equation, the Burgers equations, and the reaction-diffusion equations. Okamoto and Shoji performed numerical experiments on the bifurcation of surface waves. New bifurcation diagrams are found and will be published in a form of textbook by World Scientific Inc. Okamoto and Sakajo compute numerically two-dimensional and three-dimensional vortex sheet motion. T.Ikeda and H.Ikeda consider a certain system of reaction-diffusion equations for three competing species. They clarify the structure of steady-states and traveling pulses. Their stability is also determined. K.Ohkitani and M.Yamada consider what is called the shell model of the turbulence. By numerical methods, they compute the Lyapunov numbers of the system and they study the scaling properties of the numbers. They derive an asymptotic formula as the viscosity tends to zero. T.Nakaki consider the motion of vortex patches as well as point vortices. He finds that the motion of the patches are quite similar to that of point vortices if the size of the patches are small enough and that the motion of vortex patches are substantially different if the sizes are large. Y.Kimura considers the motion of point vortices on two-dimensional hyperbolic surfaces. Its Hamiltonian formalism are derived and the algebraic properties of the invariants are studied. T.Nishida numerically computes the Boussinesq equations, which are the master equations for the thermal convection. In particular he obtains numerically the bifurcation from the trivial solution to the stationary convective flow. He applies the numerical verification technique and derives new criteria.
纳维-斯托克斯方程、伯格斯方程、反应扩散方程研究取得进展。 Okamoto 和 Shoji 对表面波的分岔进行了数值实验。新的分岔图被发现并将由世界科学公司以教科书的形式出版。冈本和坂条对二维和三维涡旋片运动进行数值计算。 T.Ikeda 和 H.Ikeda 考虑了三个竞争物种的特定反应扩散方程系统。他们阐明了稳态和行进脉冲的结构。它们的稳定性也是确定的。 K.Ohkitani 和 M.Yamada 考虑所谓的湍流壳模型。通过数值方法,他们计算系统的李雅普诺夫数并研究这些数的缩放特性。当粘度趋于零时,他们推导出渐近公式。 T.Nakaki 考虑了涡斑和点涡的运动。他发现,如果斑块的尺寸足够小,则斑块的运动与点涡流的运动非常相似,而如果尺寸较大,则涡斑的运动有很大不同。 Y.Kimura 考虑二维双曲面上的点涡运动。推导了其哈密顿形式并研究了不变量的代数性质。 T.Nishida 对 Boussinesq 方程进行了数值计算,该方程是热对流的主方程。特别是,他在数值上获得了稳态对流的平凡解的分叉。他应用数值验证技术并得出新的标准。
项目成果
期刊论文数量(30)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
M.Yamada: "Asymptotic formulae for the Lyapunov spectrum of fully-developed shell model turbulence" Phys.Rev.E.に掲載予定.
M.Yamada:“完全发展的壳模型湍流的李亚普诺夫谱的渐近公式” 计划发表在 Phys.Rev.E 上。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H.Okamoto: "Exact solutions of the Navier-Stokes equations via Leray's scheme" Japan J.Indus.Appl.Math.14. 169-197 (1997)
H.Okamoto:“通过 Leray 方案精确求解纳维-斯托克斯方程”Japan J.Indus.Appl.Math.14。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H.Okamoto: "Exact solutions of the Navier-Stokes equations via Leray's scheme" Japan Journal of Industrial and Applied Mathematics. vol.14. 169-197 (1997)
H.Okamoto:“通过 Leray 方案精确求解纳维-斯托克斯方程”,《日本工业与应用数学杂志》。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H.Ikeda and T.Ikeda: "Bifurcation phenomena from standing pulse solutions in some reaction-diffusion systems" J.Dynamics and Differential Equations. to appear. (1999)
H.Ikeda 和 T.Ikeda:“某些反应扩散系统中驻留脉冲解的分岔现象”J.Dynamics and Differential Equations。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.-P.Liu, A.Matsumura, and K.Nishihara: "Behaviors of solutions for the Burgers equation with boundary corresponding to rar-efaction waves" SIAM J.Math.Anal.29. 293-308 (1998)
T.-P.Liu、A.Matsumura 和 K.Nishihara:“边界对应于稀疏波的 Burgers 方程解的行为”SIAM J.Math.Anal.29。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
OKAMOTO Hisashi其他文献
OKAMOTO Hisashi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('OKAMOTO Hisashi', 18)}}的其他基金
Applied Analysis on the Navier-Stokes Equations and Related Dynamical Systems
纳维-斯托克斯方程及相关动力系统的应用分析
- 批准号:
20244006 - 财政年份:2008
- 资助金额:
$ 13.57万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
A Study of Blow-up Problems and Singular Perturbation Problems arisingin Mathematical Fluid Mechanics
数学流体力学中的爆炸问题和奇异摄动问题的研究
- 批准号:
17204008 - 财政年份:2005
- 资助金额:
$ 13.57万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Applications of the dynamical systems theory and the singularity theory to mathematical fluid mechanics
动力系统理论和奇点理论在数学流体力学中的应用
- 批准号:
14204007 - 财政年份:2002
- 资助金额:
$ 13.57万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Application of the double exponential transform to integral transformations
双指数变换在积分变换中的应用
- 批准号:
11554002 - 财政年份:1999
- 资助金额:
$ 13.57万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Studies on singular perturbation problems in nonlinear mechanics
非线性力学奇异摄动问题的研究
- 批准号:
11304005 - 财政年份:1999
- 资助金额:
$ 13.57万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
On the research and development of fast solvers arising in scientific computation
科学计算中快速求解器的研究与开发
- 批准号:
09554003 - 财政年份:1997
- 资助金额:
$ 13.57万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mathematical analysis and numerical computation of nonlinear partial differential equations
非线性偏微分方程的数学分析与数值计算
- 批准号:
08454028 - 财政年份:1996
- 资助金额:
$ 13.57万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Studies on mathematical analysis and numerical computation of the Nevier-Stokes equations
内维-斯托克斯方程的数学分析与数值计算研究
- 批准号:
07304019 - 财政年份:1995
- 资助金额:
$ 13.57万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
相似海外基金
DEVELOPEMENT OF RENORMALIZATION GROUP METHODS AS TOOLS OF ANALYSIS AND THEIR APPLICATIONS TO DYNAMICAL SYSTEMS
作为分析工具的重正化群方法的发展及其在动态系统中的应用
- 批准号:
11640220 - 财政年份:1999
- 资助金额:
$ 13.57万 - 项目类别:
Grant-in-Aid for Scientific Research (C)