Studies on singular perturbation problems in nonlinear mechanics

非线性力学奇异摄动问题的研究

基本信息

  • 批准号:
    11304005
  • 负责人:
  • 金额:
    $ 10.66万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
  • 财政年份:
    1999
  • 资助国家:
    日本
  • 起止时间:
    1999 至 2001
  • 项目状态:
    已结题

项目摘要

(1) New phenomena on the Navier-Stokes equations were found. Among others, solutions having interior layers and those solutions having k-10 spectra are remarkable. (2) Bifurcation phenomena in surface waves were clarified. In particular, an accurate numerical method was developed for singular solitary waves. (3) dynamical systems viewpoints on the shell model of turbulence proposed by Ohkitani and Yamada were enhanced. (4) applications to reaction-diffusion systems, (5) vortex formation in the 2-dimensional decaying turbulence by Y. Kimura. (6) asymptotic behavior of shock wave solutions was clarified by Kawashima and Matsumura.Okamoto, with the aid by Kim Sunchul, analyzed the bifurcating solutions arising in the rhombic periodic flows. It was demonstrated, by an elaborate numerical computations, that some solutions have k-10 spectra as the Reynolds number tends to infinity. Okamoto and A. Craik considered a three-dimensional dynamical system arising in fluid mechanics. Two different … More solutions, one with 90-degree bending and one without bending, were found and the mechanism of them was theoretically explained.Y. Kimura, with J. Herring, successfully explained theoretical background of vortex structures arising in rotating fluid. S. Kawashima proved the well-posedness of radiating gases.T. Ikeda considered models for combustion synthesis. With numerical experiments he demonstrated that the solutions of the model can reproduce the results of the laboratory experiments.H. Ikeda and H. Okamoto considered a special solution of the Navier-Stokes equations called Oseen flows. Some interior layers was rigorously proved. H. Ikeda also proved that a Hopf bifurcation occurs in the traveling wave solutions of a certain bi-stable system of reaction diffusion.H. Fujita proved the existence of the solutions of the Navier-Stokes equations when they are subjected to a leak boundary condition. He also derived a new convergence rate of the domain-decomposition method.M. Yamada and K. Ohkitani discovered, by a numerical experiments, a time-periodic solution, which simulate the turbulent motions of real flows. Less
(1)Navier-Stokes上的新现象是具有内部层的溶液和具有K-10光谱的THOSS溶液(2)表面波中的分叉现象。孤独的波(4)应用于反应 - 扩散系统,(5)由y. yz yz yz yz yz yz yz的涡流中的涡流。 10光谱在流体力学中趋向于无穷大。鲱鱼在旋转的液体中脱离了旋转的分流。在称为OSEEN的Navier-Stokes方程中,某些内部层被证明是H. Ikeda也证明了Tokes方程乳清的溶液中的HOPF双fur骨域分解方法的衍生速率

项目成果

期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
H.Okamoto, M.Shoji: "World Scientific Publ."A Mathematical Introduction to Permanent Periodic Progressive Waves. 228 (2001)
H.Okamoto、M.Shoji:“世界科学出版社”永久周期行进波的数学简介。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H.Okamoto and X.Chen: "Global Existence of Solutions to the Proudman-Johnson Equation"Proc.Japan Acad.. 76. 149-152 (2000)
H.Okamoto 和 X.Chen:“Proudman-Johnson 方程解的全局存在性”Proc.Japan Acad.. 76. 149-152 (2000)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H.Ikeda and T.Ikeda: "Bifurcation phenomina from standing pulse solutions of bistable reaction-diffusion systems"J. Dynamics and Differential Equations (to appear). (2000)
H.Ikeda 和 T.Ikeda:“双稳态反应扩散系统的固定脉冲溶液的分叉现象”J。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M.Nagayama, H.Okamoto, J.Zhu: "On the blow-up of some similarity solutions of the Navier-Stokes equations"to appear in Quader.di Mat..
M.Nagayama、H.Okamoto、J.Zhu:“关于纳维-斯托克斯方程的一些相似解的放大”出现在 Quader.di Mat..
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M.Nagayama, H.Okamoto: "On the interior layer appearing in the similarity solutions of the Navier-Stokes equations"to appear in Japan J.Indust.Appl.Math..
M.Nagayama、H.Okamoto:“论纳维-斯托克斯方程相似解中出现的内层”发表于日本 J.Indust.Appl.Math..
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

OKAMOTO Hisashi其他文献

OKAMOTO Hisashi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('OKAMOTO Hisashi', 18)}}的其他基金

Applied Analysis on the Navier-Stokes Equations and Related Dynamical Systems
纳维-斯托克斯方程及相关动力系统的应用分析
  • 批准号:
    20244006
  • 财政年份:
    2008
  • 资助金额:
    $ 10.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
A Study of Blow-up Problems and Singular Perturbation Problems arisingin Mathematical Fluid Mechanics
数学流体力学中的爆炸问题和奇异摄动问题的研究
  • 批准号:
    17204008
  • 财政年份:
    2005
  • 资助金额:
    $ 10.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Applications of the dynamical systems theory and the singularity theory to mathematical fluid mechanics
动力系统理论和奇点理论在数学流体力学中的应用
  • 批准号:
    14204007
  • 财政年份:
    2002
  • 资助金额:
    $ 10.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Application of the double exponential transform to integral transformations
双指数变换在积分变换中的应用
  • 批准号:
    11554002
  • 财政年份:
    1999
  • 资助金额:
    $ 10.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Mathematical Open Problems of the Navier-Stokes Equations
纳维-斯托克斯方程的数学开放问题
  • 批准号:
    09304023
  • 财政年份:
    1997
  • 资助金额:
    $ 10.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
On the research and development of fast solvers arising in scientific computation
科学计算中快速求解器的研究与开发
  • 批准号:
    09554003
  • 财政年份:
    1997
  • 资助金额:
    $ 10.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Mathematical analysis and numerical computation of nonlinear partial differential equations
非线性偏微分方程的数学分析与数值计算
  • 批准号:
    08454028
  • 财政年份:
    1996
  • 资助金额:
    $ 10.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Studies on mathematical analysis and numerical computation of the Nevier-Stokes equations
内维-斯托克斯方程的数学分析与数值计算研究
  • 批准号:
    07304019
  • 财政年份:
    1995
  • 资助金额:
    $ 10.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)

相似国自然基金

基于超声单模态影像融合实时规划技术实现肝脏肿瘤热消融最优穿刺路径解决方案
  • 批准号:
    82371986
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
从定性到定量:基于自然解决方案的长江口湿地后生态工程评价
  • 批准号:
    32371621
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
数智驱动下高科技企业场景式解决方案研究:理论模型、构建机制及市场响应性
  • 批准号:
    72272082
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目
激光加速束斑异型化解决方案的研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
约束作用下金属锂全电池负极退化机理原位监测及解决方案
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

A numerical study for complex blow-up solutions of nonlinear evolution equations
非线性演化方程复杂爆炸解的数值研究
  • 批准号:
    18K03427
  • 财政年份:
    2018
  • 资助金额:
    $ 10.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research for decay and blow-up of solutions to nonlinear Schrodinger equations
非线性薛定谔方程解的衰减和爆炸研究
  • 批准号:
    17K05305
  • 财政年份:
    2017
  • 资助金额:
    $ 10.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
On blow-up solutions for system of nonlinear drift-diffusion equations with nonlocal interactions
具有非局部相互作用的非线性漂移扩散方程组的爆炸解
  • 批准号:
    16K05219
  • 财政年份:
    2016
  • 资助金额:
    $ 10.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies on blow-up analysis of critical variational problems and qualitative properties of solutions caused by blow-up
临界变分问题的爆炸分析及爆炸引起的解的定性性质研究
  • 批准号:
    20540216
  • 财政年份:
    2008
  • 资助金额:
    $ 10.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A numerical investigation of blow-up of solutions to the Maxwell-Debye system
麦克斯韦-德拜系统解爆炸的数值研究
  • 批准号:
    332033-2007
  • 财政年份:
    2007
  • 资助金额:
    $ 10.66万
  • 项目类别:
    Postgraduate Scholarships - Master's
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了