モジュラー多様体と不連続群の整数論
模流形和不连续群的数论
基本信息
- 批准号:04640056
- 负责人:
- 金额:$ 1.02万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for General Scientific Research (C)
- 财政年份:1992
- 资助国家:日本
- 起止时间:1992 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
2つの課題:(A)保型形式のL関数と;(B)代数曲線の基本群上のガロア表現に関して、次のような進展があった。(A)半単純群Sp(2;R)の他に、SU(2,2)の“大きな"離散系列表現のウィタッカー関数の明示的な積分公式を得た。これは幾向学的な保型形式のL関数の研究のための基礎となる。これと同時に、三重大学教育学部の古関春隆氏とSU(2,1)の離散系列表現のウィタッカー関数と局所的なL因子の研究がほぼ完成に近づけることができた。(B)代数曲線の基本群上のガロア表現を問題にすると、自然に代数曲線の種々のモジュライ空間上の普遍族のモノドロミー表現の研究に導かれる。本年度はこの問題について2つの方向で重要な進展があった。(i)写像類群もしくはタイヒミュラー群が、曲面群に作用する仕方について調ベる道具として、既に朝田衛(東京電鉄大)と松本真氏との共同研究で群のグラフを用いて、局所的な場合に結果を得ていた。松本真氏はこれを進展させ新たなデーンひねりの構成を見出した。これの応用として写像類群の曲面群への作用が、代数的かつ明示的に得られ、写像類群の相対ウエイトフィルトレイションにも応用を見出すことができた。この成果はさらに、ベき零なレベル構造付きの代数曲線のモジュライ空間の既的成分の個数や、定義体の研究に応用を期待できる。(ii)寺杣友秀氏(東京都立大理)との組の組群のビュロー表現の還元の全射性の研究の基本的予想が解決した。応用を現在進展させている。上記の(i)、(ii)はいずれもモノドロミー表現の像の決定という共通の視点からとらえられるが、証明の方法は全く異なる。玉川安騎男氏は、退化する代数曲線の基本群への情性群の作用の記述に新たな直接的な証明を与え、さらに結果を一般化した。
两个挑战:(a)l以一种类型的形式函数,(b)关于代数曲线基本组的GALOIS表示,已经取得了以下进展。 (a)除了半简单组SP(2; r)外,我们还获得了SU(2,2)的“大”离散序列表示的Whitacker函数的显式积分公式。这为研究GR功能的几何形式提供了基础。同时,对Furuseki Harutaka和Su(2,1)的离散级数表示的Whitucker功能和本地L因子的研究几乎是在这项研究的完成后。 (b)当我们考虑对代数曲线基本群体的GALOIS代表时,我们自然会导致通用家族的单粒子代表在代数曲线的各种模量空间上进行单粒子表示。今年,在两个方向上,这个问题有两个重要的发展。 (i)作为调整地图组或Teichmuller组在地面组上的作用的工具,在当地情况下,在Asada Manabu(Tokyo Electric Railway University)和Matsumoto Makoto之间的联合研究中,已经在当地案例中获得了结果。松本麦克托(Matsumoto Makoto)开发了这一点,并找到了新的丹麦人(Dane)。作为此应用,映射组对表面组的影响是通过代数和明确的,并且还发现应用于映射组的相对重量过滤。该结果可以进一步应用于对零级结构和定义的代数曲线中模量空间的现有组件数量的研究。 (ii)研究了一组Tera Shige Tomohide(东京都会大学科学)的一组群体的总体研究的基本预测。目前正在开发应用程序。 (i)和(ii)都可以从确定单核表示图像的共同角度来查看,但是证明方法是完全不同的。 Tamagawa Yasukio给出了新的直接证明,以描述情绪群体对脱墨代数曲线基本群体的影响,进一步推广结果。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
織田 孝幸: "A note on ramification of the Galois reprecantation on the fundamental apaup of an algehaic curve II." J.of Number theary.
Takayuki Oda:“关于伽罗瓦再现对代数曲线 II 的基本形式的衍生的注释。”
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
織田 孝幸: "An expliat integral neprosentation of whittaker functions for the representations of the clisuete series.-the cace of SP(2i IR)-" Tohoku J. of math.
Takayuki Oda:“用于表示 clisuete 级数的 Whittaker 函数的 Expliat 积分 neprosentation。-SP(2i IR) 的 cace-” Tohoku J. of math。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
織田 孝幸: "Galois action on the niepotent completion of the fendamental groxp of an alge bvaic anve" Roc. of Canacliam Number Theay conference´91.
Takayuki Oda:“伽罗瓦对代数 bvaic anve 的 fundamental groxp 的 niepotal groxp 的完成的作用”,Canacliam Number Theay 会议的 Roc,91。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
織田 孝幸其他文献
The stand art (g, k)-moduler of Sp(2,R)I.
Sp(2,R)I 的标准 (g, k) 模块。
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
K.Abe et al.;織田 孝幸 - 通讯作者:
織田 孝幸
織田 孝幸的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('織田 孝幸', 18)}}的其他基金
算術的代数解析の試み:多変数超幾何関数の整数論的研究
算术代数分析的一次尝试:多元超几何函数的数论研究
- 批准号:
11874003 - 财政年份:1999
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Exploratory Research
モジュライ空間と不連続群の数論
模空间和不连续群的数论
- 批准号:
08640014 - 财政年份:1996
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
モジェライ空間と不連続群の整数論的研究
Mozierei空间和不连续群的数论研究
- 批准号:
07640016 - 财政年份:1995
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
モデュラー多様体と不連続群の整数論
模流形和不连续群的数论
- 批准号:
06640041 - 财政年份:1994
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
モジュラー多様体と不連続群の整数論
模流形和不连续群的数论
- 批准号:
05640036 - 财政年份:1993
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
モジュラー多様体の数論的及び代数幾何的研究
模流形的算术和代数几何研究
- 批准号:
04245107 - 财政年份:1992
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Scientific Research on Priority Areas
モジュライ空間とその不連続群の整数論
模空间及其不连续群的数论
- 批准号:
03640049 - 财政年份:1991
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
不連続群および保型形式の整数論
不连续群和自守形式的数论
- 批准号:
01540019 - 财政年份:1989
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
保型形式の整数論
自守形式数论
- 批准号:
61740021 - 财政年份:1986
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
保型形式の整数論, 特に保型形式の周期積分の数論的研究
自守形式的数论,特别是自守形式周期积分的数论研究
- 批准号:
60740020 - 财政年份:1985
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)