Robust stabilization and anti-resonance in parametric circulatory systems
参数循环系统中的鲁棒稳定和抗共振
基本信息
- 批准号:431399977
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In this project we intend to study the stabilization of self-excited vibrations via parametric vibrations in circulatory systems. Dohnal coined the term parametric anti-resonance for stabilization of selfexcited vibrations through parametric excitation, although first examples were also found earlier by Tondl. Dohnal considered only systems with self-excitation due to nega¬tive damping and in phase parametric excitation in the stiffness matrix. In many cases of selfexcited systems, the self-excitation is however due to circulatory terms, rather than ‘negative damping’. Dohnal also explicitly excluded internal resonances and near resonances. These can however be quite important, since double eigenfrequencies are common in symmetric systems, and near internal resonances correspond to imperfectly balanced rotors, or other perturbations of symmetry, which are very common in engineering systems. Finally, the nonsynchronous parametric excitation, present in mechanical engineering systems with sliding contacts between parts, gives rise to very complex dynamical behavior (e.g. ‘total instability’ in the Cesari equations) and this has not been fully studied for circulatory systems. The cause of parametric resonance and anti-resonance was postulated by Dohnal to lie in an energy transfer between vibration modes, but never explored thoroughtly. This research should lead to a better understanding of so far not completely understood phenomena in self-excited systems (e.g. Why do brakes squeal at low speed only?) and can be of importance to many systems in engineering and possibly also in physics (see e.g. the particle trap, for which Wolfgang Paul received the Nobel Prize in 1989). Nonlinear parametrically excited systems will also be studied in this context, including the different bifurcations and limit cycles.
在这个项目中,我们打算通过电路系统中的参数振动来研究自激发振动的稳定。 Dohnal通过参数兴奋创造了一种术语参数抗谐振,以稳定自激发振动,尽管TONDL早些时候也发现了第一个示例。 Dohnal仅考虑了由于消极的舞蹈和刚度矩阵中的相位参数兴奋而引起的自激振动的系统。但是,在许多自我激发系统的情况下,自我激发是由于电路术语而不是“负舞”。 Dohnal还明确排除了内部共振和接近共振。但是,由于双重特征频率在对称系统中很常见,因此它们可能非常重要,并且近乎内部共振对应于不完美平衡的转子,或者其他对称性的扰动,这在工程系统中很常见。最后,在零件之间具有滑动触点的机械工程系统中存在的非同步参数激发产生了非常复杂的动态行为(例如,切萨里方程中的“总不稳定性”),并且尚未对电路系统进行全面研究。 Dohnal发布了参数共振和反谐振的原因,以置于振动模式之间的能量转移,但从未诚实地探索。这项研究应该导致对迄今为止的自我激发系统中的现象的更好理解(例如,为什么仅在低速下尖叫?),对于工程中的许多系统而言,也可能很重要,并且在物理学上也可能很重要(例如,参见Wolfgang Paul在1989年获得诺贝尔奖的粒子陷阱)。在这种情况下,非线性参数激发系统也将进行研究,包括不同的分叉和限制周期。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Peter Hagedorn其他文献
Professor Dr. Peter Hagedorn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Peter Hagedorn', 18)}}的其他基金
Self-excited vibrations in time-variant systems
时变系统中的自激振动
- 批准号:
267028366 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Grants
Tailoring Damping and Nonlinearities in Self-Excited Mechanical Systems
定制自激机械系统中的阻尼和非线性
- 批准号:
264065013 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Research Grants
Vibration Based Nonlinear Broadband Energy Harvesting
基于振动的非线性宽带能量收集
- 批准号:
210883424 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Research Grants
High-frequency energy harvesting with mechanical frequency conversion
通过机械变频进行高频能量收集
- 批准号:
167079056 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Research Grants
Paradoxe Zustände in der Starrkörperdynamik unter Einfluss Coulombscher Reibkräfte
库仑摩擦力影响下刚体动力学的矛盾状态
- 批准号:
117923794 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Research Grants
Wave propagation in rotating continua under non-conservative perturbations: resonant deformation of the spectral mesh and combination resonance.
非保守扰动下旋转连续体中的波传播:谱网格的共振变形和组合共振。
- 批准号:
46629384 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Research Grants
Ultraschall-Motor basierend auf dem piezoelektrischen Schereffekt
基于压电剪切效应的超声波电机
- 批准号:
42165171 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Research Grants
Mathematical modelling of vortex excited oscillations of bundled conductors in overhead transmission lines
架空输电线路中束状导体涡激振荡的数学建模
- 批准号:
5418879 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Research Grants
Modeling and identification of non-linear effects of piezoceramic actuators subjected to weak electric fields
弱电场作用下压电陶瓷执行器非线性效应的建模和识别
- 批准号:
5280281 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Research Grants
Aktive Steuerung von Verzweigungen und Chaos in nichtlinearen elastischen Strukturen
非线性弹性结构中分支和混沌的主动控制
- 批准号:
5176038 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
优先流对中俄原油管道沿线多年冻土水热稳定性的影响机制研究
- 批准号:42301138
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
用于稳定锌负极的界面层/电解液双向调控研究
- 批准号:52302289
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
深海复杂地形周边参数亚谐频不稳定激发近惯性内波的过程及调控机理
- 批准号:42306005
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
可以阻止进化过程富食悖论的稳定化机制
- 批准号:32371687
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
DJ-1通过影响UCP1稳定性调控机体代谢稳态的机制研究
- 批准号:32371194
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Multiparametric PET/MRI Assessment of Mast Cell Stabilization Effects on Inflammaging and Glucose Utilization in Infarcted Myocardium
多参数 PET/MRI 评估肥大细胞稳定对梗塞心肌炎症和葡萄糖利用的影响
- 批准号:
10650676 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Proposal of anti-resonance-stabilization for polymer design with hyperstability in extreme environment
极端环境下超稳定聚合物设计的反共振稳定建议
- 批准号:
22H00332 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (A)
Adipose tissue immunometabolism in ovarian cancer progression and chemoresistance
卵巢癌进展和化疗耐药中的脂肪组织免疫代谢
- 批准号:
10608217 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Sleep disruption in the progression and treatment of Alzheimer's disease
阿尔茨海默病的进展和治疗中的睡眠中断
- 批准号:
10474344 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Sleep disruption in the progression and treatment of Alzheimer's disease
阿尔茨海默病的进展和治疗中的睡眠中断
- 批准号:
10315098 - 财政年份:2021
- 资助金额:
-- - 项目类别: