Self-excited vibrations in time-variant systems
时变系统中的自激振动
基本信息
- 批准号:267028366
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2015
- 资助国家:德国
- 起止时间:2014-12-31 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Time-variant and in particular periodic mechanical systems are common in Machine Dynamics. The theory of linear time periodic differential equations was developed about a hundred years ago by Floquet. In applied mechanics, parametrically excited vibrations are studied with Floquet theory, which together with the particular structure of the equations of motion in mechanical systems leads to special phenomena (e.g. combination resonances). In the past, particularly conservative and stable linear systems were studied at length, which may become unstable due to additional parametric excitation (parametric resonance). In Machine Dynamics, however, usually these effects are only relevant for systems which are extremely weakly damped, and they therefore are only rarely observed in reality. They also tend to occur only in very narrow frequency ranges of the parametric excitation. More recently, time periodic mechanical systems have also become important in the context of self-excited vibrations. In a number of engineering systems, self-excitation appears in the equations of motion in the form of circulatory terms (skew symmetric matrices in the coordinate proportional forces). In many of these cases, the frequency of the parametrical excitation is much lower than that of the self-excited vibrations, so that parametric resonances in the usual sense do not play a role. Even so, the periodic coefficients may be crucial for stability. An example of this type of self-excited vibrations is break squeal. Ignoring the periodic coefficients in the numerical analysis usually leads to an overestimation of the susceptibility of a structure to become unstable, although in some cases it may also be underestimated. In the planned project, the influence of small periodic perturbations of the linearized equations of motion of circulatory systems will be studied. Subcritical and supercritical Hopf bifurcations as well as the domains of attraction of the different stationary solutions will be examined for nonlinear systems. For large periodic systems (many thousand or many hundred thousand degrees of freedom) it is planned to develop methods for dealing with the problem in a FEM environment, with the aim to allow an efficient stability analysis in this environment.
时间变化,特别是周期性的机械系统在机器动力学中很常见。线性时间周期性方程式的理论是由Floquet开发的。在应用力学中,使用浮雕理论研究了参数激发的振动,这与机械系统中运动方程的特殊结构一起导致特殊现象(例如组合共振)。过去,尤其是保守和稳定的线性系统的长度研究,由于其他参数激发(参数共振)可能会变得不稳定。但是,在机器动力学中,通常这些效果仅与受到极度弱减弱的系统有关,因此它们在现实中很少被观察到。它们还倾向于仅以参数激发的非常狭窄的频率范围出现。最近,时间周期性的机械系统在自激发振动的背景下也变得很重要。在许多工程系统中,自我激素以循环术语的形式出现在运动方程中(坐标比例力的偏斜对称矩阵)。在许多情况下,参数激发的频率远低于自激发振动的频率,因此通常意义上的参数共振不会发挥作用。即使这样,周期性系数也可能对稳定性至关重要。这种自激发振动的一个例子是断裂。忽略数值分析中的周期系数通常会导致对结构变得不稳定的敏感性的高估,尽管在某些情况下也可能被低估了。在计划的项目中,将研究循环系统运动方程的小型周期性扰动的影响。对于非线性系统,将检查亚临界和超临界的HOPF分叉以及不同固定溶液的吸引力领域。对于大型的周期系统(数千到数十万个自由度),计划开发用于在FEM环境中处理问题的方法,目的是允许在此环境中进行有效的稳定性分析。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
FEM with Floquet Theory for Non-slender Elastic Columns Subject to Harmonic Applied Axial Force Using 2D and 3D Solid Elements
- DOI:10.1007/978-3-030-13720-5_22
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:E. Clerkin;Markus Rieken
- 通讯作者:E. Clerkin;Markus Rieken
Asynchronous parametric excitation, total instability and its occurrence in engineering structures
工程结构中的异步参量激励、总体失稳及其发生
- DOI:10.1016/j.jsv.2018.05.003
- 发表时间:2018
- 期刊:
- 影响因子:4.7
- 作者:Artem Karev;Peter Hagedorn;Daniel Hochlenert
- 通讯作者:Daniel Hochlenert
Some remarks on parametric excitation in circulatory systems
关于循环系统参数激励的一些评论
- DOI:10.1002/pamm.201800061
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Artem Karev;Lara De Broeck;Peter Hagedorn
- 通讯作者:Peter Hagedorn
Atypical parametric instability in linear and nonlinear systems
线性和非线性系统中的非典型参数不稳定性
- DOI:10.1016/j.proeng.2017.09.118
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Peter Hagedorn;Artem Karev;Daniel Hochlenert
- 通讯作者:Daniel Hochlenert
Global stability effects of parametric excitation
参数激励的全局稳定性效应
- DOI:10.1016/j.jsv.2019.02.014
- 发表时间:2019
- 期刊:
- 影响因子:4.7
- 作者:Artem Karev;Peter Hagedorn
- 通讯作者:Peter Hagedorn
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Peter Hagedorn其他文献
Professor Dr. Peter Hagedorn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Peter Hagedorn', 18)}}的其他基金
Tailoring Damping and Nonlinearities in Self-Excited Mechanical Systems
定制自激机械系统中的阻尼和非线性
- 批准号:
264065013 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Research Grants
Vibration Based Nonlinear Broadband Energy Harvesting
基于振动的非线性宽带能量收集
- 批准号:
210883424 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Research Grants
High-frequency energy harvesting with mechanical frequency conversion
通过机械变频进行高频能量收集
- 批准号:
167079056 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Research Grants
Paradoxe Zustände in der Starrkörperdynamik unter Einfluss Coulombscher Reibkräfte
库仑摩擦力影响下刚体动力学的矛盾状态
- 批准号:
117923794 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Research Grants
Wave propagation in rotating continua under non-conservative perturbations: resonant deformation of the spectral mesh and combination resonance.
非保守扰动下旋转连续体中的波传播:谱网格的共振变形和组合共振。
- 批准号:
46629384 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Research Grants
Ultraschall-Motor basierend auf dem piezoelektrischen Schereffekt
基于压电剪切效应的超声波电机
- 批准号:
42165171 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Research Grants
Mathematical modelling of vortex excited oscillations of bundled conductors in overhead transmission lines
架空输电线路中束状导体涡激振荡的数学建模
- 批准号:
5418879 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Research Grants
Modeling and identification of non-linear effects of piezoceramic actuators subjected to weak electric fields
弱电场作用下压电陶瓷执行器非线性效应的建模和识别
- 批准号:
5280281 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Research Grants
Aktive Steuerung von Verzweigungen und Chaos in nichtlinearen elastischen Strukturen
非线性弹性结构中分支和混沌的主动控制
- 批准号:
5176038 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Research Grants
Robust stabilization and anti-resonance in parametric circulatory systems
参数循环系统中的鲁棒稳定和抗共振
- 批准号:
431399977 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
GPR27活化ECL3结合兴奋性突触后核心蛋白SHANKS调控内嗅皮层-海马长时程增强在慢性癫痫共患抑郁样行为大鼠中的作用及机制
- 批准号:82371451
- 批准年份:2023
- 资助金额:47 万元
- 项目类别:面上项目
基于mPFC中兴奋/抑制功能平衡的快速抗抑郁作用机制研究
- 批准号:82304462
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
星形胶质细胞调控丘脑室旁核ChAT神经元兴奋性在吸入麻醉苏醒的机制研究
- 批准号:82371280
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
大麻素2型受体介导黒质多巴胺能神经元兴奋性降低及抑制帕金森病黑质铁聚积的机制研究
- 批准号:82371425
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
中红外光对大脑皮层神经元兴奋效应的机制研究
- 批准号:32300937
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Understanding and improving energy dissipation and vibration damping in structures subject to self-excited irregular vibrations – linking data driven approaches with modelling
了解和改善受自激不规则振动影响的结构中的能量耗散和振动阻尼 – 将数据驱动方法与建模联系起来
- 批准号:
314996260 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Priority Programmes
Study on the characteristic and the countermeasures against self-excited vibrations which are generated in the support part of high stack
高堆垛支撑部位自激振动特性及对策研究
- 批准号:
20560211 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Wire-Screen Belt Vibrations Coupled with Fluid Motion in a Fourdrinier Paper Machine
长网造纸机中丝网带振动与流体运动的耦合
- 批准号:
10650232 - 财政年份:1998
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)