非単純閉曲線に対する幾何学流の爆発のメカニズム解明と漸近解析
非简单闭合曲线几何流爆炸的机理阐明与渐近分析
基本信息
- 批准号:23K20221
- 负责人:
- 金额:$ 2.25万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2024
- 资助国家:日本
- 起止时间:2024-02-28 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
長澤 壯之其他文献
A refinement of Mane's C1 generic dichotomy
马内 C1 通用二分法的改进
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
渚勝;内山充;Shuhei HAYASHI;長澤 壯之;本多尚文;長澤壯之;渚勝;Shuhei HAYASHI - 通讯作者:
Shuhei HAYASHI
Decomposition of the O'Hara energy
奥哈拉能量的分解
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Aya Ishizeki;Takeyuki Nagasawa;長澤 壯之;T. Nagasawa - 通讯作者:
T. Nagasawa
結び目と絡み目に対するメビウス・エネルギーのメビウス不変分解について
关于结和链的莫比乌斯能量的莫比乌斯不变分解
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Aya Ishizeki;Takeyuki Nagasawa;長澤 壯之;T. Nagasawa;T. Nagasawa;長澤 壯之 - 通讯作者:
長澤 壯之
Variational formulae and estimates for decomposed Mobius energies
分解莫比乌斯能量的变分公式和估计
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Dan-Andrei Geba;Kenji Nakanishi and Xiang Zhang;長澤 壯之 - 通讯作者:
長澤 壯之
長澤 壯之的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('長澤 壯之', 18)}}的其他基金
Analysis of variational problems in topological geometry using Sobolev manifolds
使用 Sobolev 流形分析拓扑几何中的变分问题
- 批准号:
21K18583 - 财政年份:2021
- 资助金额:
$ 2.25万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
非単純閉曲線に対する幾何学流の爆発のメカニズム解明と漸近解析
非简单闭合曲线几何流爆炸的机理阐明与渐近分析
- 批准号:
20H01813 - 财政年份:2020
- 资助金额:
$ 2.25万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
過剰決定系楕円型方程式の解の存在と領域の対称性に関する研究
超定椭圆方程解的存在性及域对称性研究
- 批准号:
10740080 - 财政年份:1998
- 资助金额:
$ 2.25万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
離散的勾配流を用いた発展方法式の解の構成と正則性の研究
离散梯度流演化法方程的构造及规律性研究
- 批准号:
08740085 - 财政年份:1996
- 资助金额:
$ 2.25万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
相似国自然基金
基于FRET受体上升时间的单分子高精度测量方法研究
- 批准号:22304184
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
土壤高氮累积区非饱和-饱和界面氮迁移转化及其对地下水硝酸盐演变的作用机制
- 批准号:42377080
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
脂质多聚复合物mRNA纳米疫苗的构筑及抗肿瘤治疗研究
- 批准号:52373161
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
屏障突破型原位线粒体基因递送系统用于治疗Leber遗传性视神经病变的研究
- 批准号:82304416
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
细胞硬度介导口腔鳞癌细胞与CD8+T细胞间力学对话调控免疫杀伤的机制研究
- 批准号:82373255
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
相似海外基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
$ 2.25万 - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
$ 2.25万 - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
$ 2.25万 - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
$ 2.25万 - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
$ 2.25万 - 项目类别:
Studentship