志村多様体とプリズム

志村流形和棱镜

基本信息

  • 批准号:
    23K17650
  • 负责人:
  • 金额:
    $ 4.16万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
  • 财政年份:
    2023
  • 资助国家:
    日本
  • 起止时间:
    2023-06-30 至 2026-03-31
  • 项目状态:
    未结题

项目摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

今井 直毅其他文献

Loop stacks of the affine motivic stack of K-theory
K 理论仿射动机栈的循环栈
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    伊山 修;源 泰幸;源 泰幸;源 泰幸;Kestutis Cesnavicius and Naoki Imai;今井直毅;Kestutis Cesnavicius and Naoki Imai;Naoki Imai;Naoki Imai and Takahiro Tsushima;今井 直毅;Naoki Imai;Naoki Imai;Naoki Imai;Naoki Imai;加藤 裕基;加藤 裕基
  • 通讯作者:
    加藤 裕基
Introduction to motivic derived algebraic geometry
动机导出代数几何简介
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    伊山 修;源 泰幸;源 泰幸;源 泰幸;Kestutis Cesnavicius and Naoki Imai;今井直毅;Kestutis Cesnavicius and Naoki Imai;Naoki Imai;Naoki Imai and Takahiro Tsushima;今井 直毅;Naoki Imai;Naoki Imai;Naoki Imai;Naoki Imai;加藤 裕基;加藤 裕基;加藤 裕基
  • 通讯作者:
    加藤 裕基
Motivic model categories and motivic derived algebraic geometry
Motivic 模型类别和 Motivic 派生代数几何
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    伊山 修;源 泰幸;源 泰幸;源 泰幸;Kestutis Cesnavicius and Naoki Imai;今井直毅;Kestutis Cesnavicius and Naoki Imai;Naoki Imai;Naoki Imai and Takahiro Tsushima;今井 直毅;Naoki Imai;Naoki Imai;Naoki Imai;Naoki Imai;加藤 裕基
  • 通讯作者:
    加藤 裕基
The p-adic and mod p local Langlands correspondence for GL(2,Q_p)
GL(2,Q_p) 的 p-adic 和 mod p 局部 Langlands 对应关系
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    伊山 修;源 泰幸;源 泰幸;源 泰幸;Kestutis Cesnavicius and Naoki Imai;今井直毅;Kestutis Cesnavicius and Naoki Imai;Naoki Imai;Naoki Imai and Takahiro Tsushima;今井 直毅;Naoki Imai;Naoki Imai;Naoki Imai
  • 通讯作者:
    Naoki Imai

今井 直毅的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('今井 直毅', 18)}}的其他基金

志村多様体の超特異部分の幾何とコホモロジー
Shimura流形超奇异部分的几何和上同调
  • 批准号:
    23KF0140
  • 财政年份:
    2023
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
局所 Langlands 対応の幾何化と Scholze--Shin 予想
局部朗兰兹对应几何与Scholze--Shin猜想
  • 批准号:
    22KF0109
  • 财政年份:
    2023
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
局所 Langlands 対応の圏化に関する多角的研究
当地朗兰兹信件分类的多方面研究
  • 批准号:
    22H00093
  • 财政年份:
    2022
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Deligne-Lusztig 多様体とFargues-Fontaine 曲線
Deligne-Lusztig 流形和 Fargues-Fontaine 曲线
  • 批准号:
    19F19022
  • 财政年份:
    2019
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Gジップを用いた志村多様体の幾何と法p保型形式の研究
使用 G-zip 研究 Shimura 流形的几何和模态 p-自守形式
  • 批准号:
    18F18311
  • 财政年份:
    2018
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Galois 表現とその変形の研究
伽罗瓦表示及其变换的研究
  • 批准号:
    09J06412
  • 财政年份:
    2009
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows

相似国自然基金

基于FRET受体上升时间的单分子高精度测量方法研究
  • 批准号:
    22304184
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
土壤高氮累积区非饱和-饱和界面氮迁移转化及其对地下水硝酸盐演变的作用机制
  • 批准号:
    42377080
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
脂质多聚复合物mRNA纳米疫苗的构筑及抗肿瘤治疗研究
  • 批准号:
    52373161
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
屏障突破型原位线粒体基因递送系统用于治疗Leber遗传性视神经病变的研究
  • 批准号:
    82304416
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
细胞硬度介导口腔鳞癌细胞与CD8+T细胞间力学对话调控免疫杀伤的机制研究
  • 批准号:
    82373255
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目

相似海外基金

簡約代数群の弱近似と志村多様体の数論幾何
Shimura流形的约简代数群和算术几何的弱近似
  • 批准号:
    24K16884
  • 财政年份:
    2024
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
局所志村多様体と局所ラングランズ対応
当地志村流形和当地朗兰对应
  • 批准号:
    23K20204
  • 财政年份:
    2024
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
志村多様体および局所対称空間のコホモロジー
Shimura 流形和局部对称空间的上同调
  • 批准号:
    24K16895
  • 财政年份:
    2024
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
志村多様体の整モデルの構成およびコホモロジーの消滅について
关于Shimura流形的明确模型的构造和上同调的消失
  • 批准号:
    24KJ0865
  • 财政年份:
    2024
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
志村多様体の超特異部分の幾何とコホモロジー
Shimura流形超奇异部分的几何和上同调
  • 批准号:
    23KF0140
  • 财政年份:
    2023
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了