準線形常微分方程式の漸近解析とその偏微分方程式への応用

拟线性常微分方程的渐近分析及其在偏微分方程中的应用

基本信息

  • 批准号:
    24K06808
  • 负责人:
  • 金额:
    $ 0.67万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2024
  • 资助国家:
    日本
  • 起止时间:
    2024-04-01 至 2027-03-31
  • 项目状态:
    未结题

项目摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

宇佐美 広介其他文献

2階準線型常微分方程式の緩減衰正値解の漸近形について
关于二阶拟线性常微分方程慢阻尼正解的渐近形式
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    宇佐美 広介
  • 通讯作者:
    宇佐美 広介
2階準線形常微分方程式の緩減衰正値解の漸近形について
关于二阶拟线性常微分方程慢阻尼正解的渐近形式
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    宇佐美 広介
  • 通讯作者:
    宇佐美 広介
2階準線型常微分方程式の緩減衰正値解の漸近形について : 臨界的な場合
关于二阶拟线性常微分方程的慢阻尼正解的渐近形式:临界情况
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    宇佐美 広介
  • 通讯作者:
    宇佐美 広介
2階準線型常微分方程式の緩減衰正値解の漸近形についてII
关于二阶拟线性常微分方程慢阻尼正解的渐近形式II
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    宇佐美 広介
  • 通讯作者:
    宇佐美 広介

宇佐美 広介的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('宇佐美 広介', 18)}}的其他基金

Asymptotic analysis of quasilinear ordinary differential equations and its application to partial differential equations
拟线性常微分方程的渐近分析及其在偏微分方程中的应用
  • 批准号:
    21K03307
  • 财政年份:
    2021
  • 资助金额:
    $ 0.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Asymptotic analysis of quasilinear ordinary differential equations and its application to partial differential equations
拟线性常微分方程的渐近分析及其在偏微分方程中的应用
  • 批准号:
    21K03307
  • 财政年份:
    2021
  • 资助金额:
    $ 0.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
非有界領域における準線形楕円型方程式の解の漸近的性質について
无界域次线性椭圆方程解的渐近性质
  • 批准号:
    06740121
  • 财政年份:
    1994
  • 资助金额:
    $ 0.67万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
非有界領域における非線形楕円型偏微分方程式の解の存在と漸近行動の研究
无界区域非线性椭圆偏微分方程解的存在性及渐近行为研究
  • 批准号:
    63740089
  • 财政年份:
    1988
  • 资助金额:
    $ 0.67万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)

相似国自然基金

基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
  • 批准号:
    82304250
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
适当冷暴露通过肠道菌群调控心脏免疫微环境改善心梗后心室重构和心力衰竭的作用与机制
  • 批准号:
    82330014
  • 批准年份:
    2023
  • 资助金额:
    220 万元
  • 项目类别:
    重点项目
肠道普拉梭菌代谢物丁酸抑制心室肌铁死亡改善老龄性心功能不全的机制研究
  • 批准号:
    82300430
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
社会网络关系对公司现金持有决策影响——基于共御风险的作用机制研究
  • 批准号:
    72302067
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向图像目标检测的新型弱监督学习方法研究
  • 批准号:
    62371157
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    $ 0.67万
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    $ 0.67万
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    $ 0.67万
  • 项目类别:
    Studentship
Development of a new solid tritium breeder blanket
新型固体氚增殖毯的研制
  • 批准号:
    2908923
  • 财政年份:
    2027
  • 资助金额:
    $ 0.67万
  • 项目类别:
    Studentship
Cosmological hydrodynamical simulations with calibrated non-universal initial mass functions
使用校准的非通用初始质量函数进行宇宙流体动力学模拟
  • 批准号:
    2903298
  • 财政年份:
    2027
  • 资助金额:
    $ 0.67万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了