CRII: OAC: A Computational Framework for Studying Transport Phenomena in Complex Networks: From Biological Towards Sustainable and Resilient Engineering Networks
CRII:OAC:研究复杂网络中传输现象的计算框架:从生物网络到可持续和弹性工程网络
基本信息
- 批准号:2349122
- 负责人:
- 金额:$ 17.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Transport networks are found everywhere in living systems, from the veins in the leaves of plants to the networks in our bodies: the respiratory system that handles the flow of air, the circulatory system that carries nutrients through blood circulation, and the networks of nerves and brain cells that transport electrical impulses. Because biological networks are necessary for transporting essential resources (blood, oxygen, water, and nutrients), they are critical for health and survival. Therefore, there is a clear need to explore the fundamental principles of these networks to better predict how they will behave under unexpected conditions in order to prevent potential failures. Exploring the underlying mechanisms of biological flow will not only advance the current state of knowledge of biological transport networks but can provide exceptional opportunities to solve complex problems in discrete calculus, graph theory, and optimization. This would, in turn, lead to improvements in engineering transport networks that are critical for maintaining human life in ways that will make them more durable and operate with greater efficiency, from networks that are large in scale, such as traffic systems, irrigation and water delivery systems, and power grids to networks that are small in scale such as fuel cells, solar cells, or artificial organs. The computational framework developed in this project will advance our knowledge of biological vascular networks, which can lead to optimized bioinspired solutions for many engineering transport networks such as water distribution and drainage networks to the treatment of cardiovascular diseases and more efficient drug delivery through the use of nanoparticles. Since the developed models for leaf venation networks in this project are critical to plant performance, the results can also enhance productivity of ecosystems and will have applications in agriculture. As such, this research project aligns with NSF’s mission to promote the progress of science and to advance national health, prosperity and welfare. This work incorporates multidisciplinary research collaborations that will make a significant contribution to education, outreach, and diversity by engaging undergraduate students, including underrepresented students, in research and incorporation of biology and engineering in outreach programs for K through 12 students.zOver billions of years of natural selection, nature has evolved complex topologies to solve a wide range of problems. A conspicuous class of such topologies are the ramified heterogeneous structures in numerous biological systems that transport resources, such as leaf venation networks, the root and axis system of plants, and the cardiovascular system of animals and humans. The evolution and function of such branched structures is not only critical for an organism’s survival and fitness but has also inspired scientists and engineers to improve the performance of many engineering flow networks such as fuel cells, solar cells and synthetic organs. The overall aim of this project is to 1) develop a robust and efficient computational framework to study transport phenomena in complex biological networks, 2) apply the framework to study the rules of nature that optimize mass and heat transfer in biological networks, and 3) assess the feasibility of bioinspired principles to design sustainable and resilient engineering networks. The proposed framework will enable the development of transformative models that not only advance our knowledge about underlying biophysical phenomena in highly heterogeneous biological networks but also provide new opportunities to apply bioinspired solutions for many engineering applications. The proposed research will result in a highly efficient and robust framework that enables (1) a fundamental understanding of the performance of complex biological transport networks and their biophysical characteristics and functions which are essential for survival, (2) an understanding of multiphysics coupled transport phenomena in highly heterogeneous biological networks, (3) an assessment of the resilience of networks to damage and varying fluxes and an understanding the underlying mechanisms and principles used by biological systems for optimization of cost and performance, and (4) assessment of the feasibility and scalability of the biological mechanisms as bioinspired solutions for practical engineering problems that range from micro to macro in scale.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
运输网络在生命系统中随处可见,从植物叶子的静脉到我们体内的网络:处理空气流动的呼吸系统、通过血液循环输送营养的循环系统以及神经和神经网络。由于生物网络对于运输基本资源(血液、氧气、水和营养物质)是必需的,因此它们对于健康和生存至关重要,因此,显然需要探索这些网络的基本原理。更好地预测他们在意外情况下的行为为了防止潜在的失败,探索生物流的潜在机制不仅可以提高生物运输网络的知识水平,而且可以为解决离散微积分、图论和优化中的复杂问题提供特殊的机会。反过来,通过大规模的网络,如交通系统、灌溉和供水系统,改善对维持人类生命至关重要的工程运输网络,使其更持久、更高效地运行,以及电网到燃料等小规模网络该项目开发的计算框架将增进我们对生物血管网络的了解,从而为许多工程运输网络(例如治疗心血管疾病的配水和排水网络)提供优化的仿生解决方案。由于该项目中开发的叶脉网络模型对于植物性能至关重要,因此其结果还可以提高生态系统的生产力,并将在农业中得到应用。符合 NSF 的使命,即促进这项工作结合了多学科研究合作,通过让本科生(包括代表性不足的学生)参与研究并将生物学和工程学纳入其中,为教育、推广和多样性做出重大贡献。面向 K 至 12 名学生的外展计划。 经过数十亿年的自然选择,大自然已经进化出复杂的拓扑结构来解决广泛的问题。此类拓扑结构中的一类引人注目的是众多生物系统中运输资源的分叉异质结构。例如叶子的脉络网络、植物的根和轴系统以及动物和人类的心血管系统。此类分支结构的进化和功能不仅对于有机体的生存和健康至关重要,而且还激发了科学家和工程师的改进。许多工程流动网络(如燃料电池、太阳能电池和合成器官)的性能该项目的总体目标是 1)开发一个强大且高效的计算框架来研究复杂生物网络中的传输现象,2)将该框架应用于研究优化传质和传热的自然规则3)评估生物启发原理设计可持续和有弹性的工程网络的可行性。所提出的框架将有助于开发变革性模型,这些模型不仅可以增进我们对高度异构生物网络中潜在生物物理现象的了解,而且还可以提供新的知识。拟议的研究将有机会将仿生解决方案应用于许多工程应用,从而形成一个高效且强大的框架,该框架能够(1)对复杂生物运输网络的性能及其对生存至关重要的生物物理特征和功能有基本的了解, (2)对多物理场的理解高度异质生物网络中的耦合传输现象,(3)评估网络对损坏和变化通量的恢复能力,并了解生物系统用于优化成本和性能的基本机制和原理,以及(4)评估生物机制作为从微观到宏观的实际工程问题的仿生解决方案的可行性和可扩展性。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Pullout resistance of biomimetic root-inspired foundation systems
仿生根启发基础系统的抗拉拔性
- DOI:10.1007/s11440-023-02118-6
- 发表时间:2023-11-24
- 期刊:
- 影响因子:5.7
- 作者:Thibaut Houette;Meron Dibia;Nariman Mahabadi;Hunter King
- 通讯作者:Hunter King
A (Simplified) Biogeochemical Numerical Model to Predict Saturation, Porosity and Permeability During Microbially Induced Desaturation and Precipitation
用于预测微生物引起的去饱和和沉淀过程中的饱和度、孔隙度和渗透率的(简化)生物地球化学数值模型
- DOI:10.1029/2022wr032907
- 发表时间:2023-01-01
- 期刊:
- 影响因子:5.4
- 作者:Liya Wang;L. V. van Paassen;V. Pham;Nariman Mahabadi;Jibo He;Yunqi Gao
- 通讯作者:Yunqi Gao
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nariman Mahabadi其他文献
Water Permeability Reduction in THF Hydrate-Bearing Sediments
含 THF 水合物沉积物中水渗透率的降低
- DOI:
10.1007/978-3-319-95774-6_18 - 发表时间:
2018-07-12 - 期刊:
- 影响因子:0
- 作者:
Nariman Mahabadi;T. Yun;Jaewon Jang - 通讯作者:
Jaewon Jang
The water retention curve and relative permeability for gas production from hydrate‐bearing sediments: pore‐network model simulation
含水合物沉积物产气的保水曲线和相对渗透率:孔隙网络模型模拟
- DOI:
10.1002/2016gc006372 - 发表时间:
2016-08-01 - 期刊:
- 影响因子:3.7
- 作者:
Nariman Mahabadi;S. Dai;Y. Seol;Tae Sup Yun;Jaewon Jang - 通讯作者:
Jaewon Jang
Evolution of Porosity–Permeability Relationships in Bio-Mediated Processes for Ground Improvement: A Pore-Scale Computational Study
生物介导的地面改良过程中孔隙度-渗透率关系的演变:孔隙尺度计算研究
- DOI:
10.1061/9780784484036.064 - 发表时间:
2022-03-17 - 期刊:
- 影响因子:0
- 作者:
S. Nassiri;Nariman Mahabadi - 通讯作者:
Nariman Mahabadi
The effect of hydrate saturation on water retention curves in hydrate‐bearing sediments
- DOI:
10.1002/2016gl068656 - 发表时间:
2016-05-16 - 期刊:
- 影响因子:5.2
- 作者:
Nariman Mahabadi;Xianglei Zheng;Jaewon Jang - 通讯作者:
Jaewon Jang
Relative water and gas permeability for gas production from hydrate‐bearing sediments
从含水合物沉积物中生产天然气的相对水和气体渗透率
- DOI:
10.1002/2014gc005331 - 发表时间:
2014-06-01 - 期刊:
- 影响因子:3.7
- 作者:
Nariman Mahabadi;Jaewon Jang - 通讯作者:
Jaewon Jang
Nariman Mahabadi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nariman Mahabadi', 18)}}的其他基金
CRII: OAC: A Computational Framework for Studying Transport Phenomena in Complex Networks: From Biological Towards Sustainable and Resilient Engineering Networks
CRII:OAC:研究复杂网络中传输现象的计算框架:从生物网络到可持续和弹性工程网络
- 批准号:
2105012 - 财政年份:2021
- 资助金额:
$ 17.44万 - 项目类别:
Standard Grant
相似国自然基金
Z8-12:OH和Z8-14:OAc分别维持梨小食心虫和李小食心虫性诱剂特异性的分子基础
- 批准号:
- 批准年份:2021
- 资助金额:35 万元
- 项目类别:地区科学基金项目
亚硝酰钌配合物[Ru(OAc)(2mqn)2NO]的光异构反应机理研究
- 批准号:21603131
- 批准年份:2016
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
机械化学条件下Mn(OAc)3促进的自由基串联反应研究
- 批准号:21242013
- 批准年份:2012
- 资助金额:10.0 万元
- 项目类别:专项基金项目
相似海外基金
CRII: OAC: A Multi-fidelity Computational Framework for Discovering Governing Equations Under Uncertainty
CRII:OAC:用于发现不确定性下控制方程的多保真度计算框架
- 批准号:
2348495 - 财政年份:2024
- 资助金额:
$ 17.44万 - 项目类别:
Standard Grant
CRII: OAC: A computational framework for multiscale simulation of cardiovascular disease progression connecting cell-scale biology to organ-scale hemodynamics
CRII:OAC:将细胞尺度生物学与器官尺度血流动力学连接起来的心血管疾病进展多尺度模拟的计算框架
- 批准号:
2246911 - 财政年份:2022
- 资助金额:
$ 17.44万 - 项目类别:
Standard Grant
CRII: OAC: A Computational Framework for Studying Transport Phenomena in Complex Networks: From Biological Towards Sustainable and Resilient Engineering Networks
CRII:OAC:研究复杂网络中传输现象的计算框架:从生物网络到可持续和弹性工程网络
- 批准号:
2105012 - 财政年份:2021
- 资助金额:
$ 17.44万 - 项目类别:
Standard Grant
CRII: OAC: A computational framework for multiscale simulation of cardiovascular disease progression connecting cell-scale biology to organ-scale hemodynamics
CRII:OAC:将细胞尺度生物学与器官尺度血流动力学连接起来的心血管疾病进展多尺度模拟的计算框架
- 批准号:
1947559 - 财政年份:2020
- 资助金额:
$ 17.44万 - 项目类别:
Standard Grant
CRII: OAC: Real-time Computational Modeling of Crop Phenological Progress towards Scalable Satellite Precision Farming
CRII:OAC:作物物候进展的实时计算建模,实现可扩展的卫星精准农业
- 批准号:
1849821 - 财政年份:2019
- 资助金额:
$ 17.44万 - 项目类别:
Standard Grant