CRII: OAC: A Multi-fidelity Computational Framework for Discovering Governing Equations Under Uncertainty

CRII:OAC:用于发现不确定性下控制方程的多保真度计算框架

基本信息

  • 批准号:
    2348495
  • 负责人:
  • 金额:
    $ 17.37万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-07-01 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

Understanding the nature of physical systems has always been an essential curiosity of humankind, enabling the discovery of many fundamental physical laws governing these systems and processes. Often, in the process, it was seen that a more straightforward explanation is preferred -- embodied in the famous Occam's razor or principle of parsimony. With a similar goal, this project conducts fundamental research seeking to advance the state-of-the-art in understanding the parsimonious principles of physics governing the behavior of a complex physical system under uncertainty. The resulting software framework enables the users to utilize data from a wide range of physical systems to unlock the important aspects of their behavior by analyzing the identified mathematical equations. With this framework, the project investigator provides the community of researchers and educators with a powerful and amenable tool to comprehend and predict the actual behavior of various real-world systems in the presence of uncertainty. Harnessing already developed knowledge in understanding simplified physical systems with similar behavior, the framework builds a novel paradigm using interpretable deep learning for discovering parsimonious governing equations to describe the behavior of complex physical systems under uncertainty. New approaches to utilizing low-fidelity models in defining the system's behavior are also explored, providing even more computationally efficient tools to incorporate prior knowledge. These advancements and the developed software allow the framework to be applied to various application domains. The framework is evaluated with testbed problems such as the behavior of a 20-story building and a benchmark turbulence modeling problem. Furthermore, the resulting framework is applied to other critical problems of complex nature through collaborations, e.g., the spread of wildland fires, enzyme-catalyzed reactions, and the spread of pollutant plumes. The project also emphasizes the importance of identifying parsimonious governing equations to describe the behavior of complex systems through education and outreach activities. Results from the project are submitted to reputable journals and presented at national and international conferences. One graduate student is mentored as part of the project, and findings are incorporated into an undergraduate probability and machine learning course. K-12 outreach efforts led by the project investigator include modules on the discovery of equations, machine learning basics, and using software to infer from data based on the research outputs from this project presented at middle/high school summer workshop programs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
了解物理系统的本质一直是人类的基本好奇心,使得人们能够发现许多管理这些系统和过程的基本物理定律。通常,在这个过程中,人们会发现更直接的解释是更受欢迎的——体现在著名的奥卡姆剃刀或简约原则中。出于类似的目标,该项目进行基础研究,寻求推进最先进的技术,以理解控制不确定性下复杂物理系统行为的简约物理学原理。由此产生的软件框架使用户能够利用来自各种物理系统的数据,通过分析已识别的数学方程来解锁其行为的重要方面。通过这个框架,项目研究者为研究人员和教育工作者社区提供了一个强大且易于使用的工具,以理解和预测各种现实世界系统在存在不确定性的情况下的实际行为。该框架利用在理解具有相似行为的简化物理系统方面已经开发的知识,使用可解释的深度学习构建了一种新颖的范式,以发现简约的控制方程来描述复杂物理系统在不确定性下的行为。还探索了利用低保真模型定义系统行为的新方法,提供了计算效率更高的工具来整合先验知识。这些进步和开发的软件使该框架能够应用于各种应用领域。该框架通过测试台问题进行评估,例如 20 层建筑的行为和基准湍流建模问题。此外,由此产生的框架通过合作应用于其他复杂性质的关键问题,例如野火的蔓延、酶催化反应和污染物羽流的扩散。该项目还强调了通过教育和推广活动确定简约控制方程来描述复杂系统行为的重要性。该项目的结果将提交给知名期刊并在国内和国际会议上展示。作为该项目的一部分,一名研究生受到指导,其研究结果被纳入本科生概率和机器学习课程中。由项目研究员领导的 K-12 推广工作包括方程发现、机器学习基础知识以及使用软件根据初中/高中暑期研讨会项目中提出的该项目的研究成果从数据中进行推断的模块。该奖项反映了通过使用基金会的智力价值和更广泛的影响审查标准进行评估,NSF 的法定使命被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Subhayan De其他文献

Reliability-based topology optimization using stochastic gradients
PINN surrogate of Li-ion battery models for parameter inference. Part I: Implementation and multi-fidelity hierarchies for the single-particle model
用于参数推断的锂离子电池模型的 PINN 替代品。
  • DOI:
    10.48550/arxiv.2312.17329
  • 发表时间:
    2023-12-28
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Hassanaly;Peter J. Weddle;Ryan N. King;Subhayan De;Alireza Doostan;Corey R. Randall;Eric J. Dufek;Andrew M. Colclasure;Kandler Smith
  • 通讯作者:
    Kandler Smith
Topology optimization under microscale uncertainty using stochastic gradients
使用随机梯度的微尺度不确定性下的拓扑优化
A hybrid probabilistic framework for model validation with application to structural dynamics modeling
用于模型验证的混合概率框架及其在结构动力学建模中的应用
  • DOI:
    10.1016/j.ymssp.2018.10.014
  • 发表时间:
    2019-04-15
  • 期刊:
  • 影响因子:
    8.4
  • 作者:
    Subhayan De;P. Brewick;Erik A. Johnson;S. Wojtkiewicz
  • 通讯作者:
    S. Wojtkiewicz
Uncertainty Quantification of Locally Nonlinear Dynamical Systems Using Neural Networks
使用神经网络对局部非线性动力系统的不确定性进行量化
  • DOI:
    10.1061/(asce)cp.1943-5487.0000965
  • 发表时间:
    2020-08-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Subhayan De
  • 通讯作者:
    Subhayan De

Subhayan De的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Z8-12:OH和Z8-14:OAc分别维持梨小食心虫和李小食心虫性诱剂特异性的分子基础
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    35 万元
  • 项目类别:
    地区科学基金项目
亚硝酰钌配合物[Ru(OAc)(2mqn)2NO]的光异构反应机理研究
  • 批准号:
    21603131
  • 批准年份:
    2016
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
机械化学条件下Mn(OAc)3促进的自由基串联反应研究
  • 批准号:
    21242013
  • 批准年份:
    2012
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

OAC Core: Cost-Adaptive Monitoring and Real-Time Tuning at Function-Level
OAC核心:功能级成本自适应监控和实时调优
  • 批准号:
    2402542
  • 财政年份:
    2024
  • 资助金额:
    $ 17.37万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: CropDL - Scheduling and Checkpoint/Restart Support for Deep Learning Applications on HPC Clusters
合作研究:OAC 核心:CropDL - HPC 集群上深度学习应用的调度和检查点/重启支持
  • 批准号:
    2403088
  • 财政年份:
    2024
  • 资助金额:
    $ 17.37万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: CropDL - Scheduling and Checkpoint/Restart Support for Deep Learning Applications on HPC Clusters
合作研究:OAC 核心:CropDL - HPC 集群上深度学习应用的调度和检查点/重启支持
  • 批准号:
    2403090
  • 财政年份:
    2024
  • 资助金额:
    $ 17.37万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
  • 批准号:
    2403313
  • 财政年份:
    2024
  • 资助金额:
    $ 17.37万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Large-Scale Spatial Machine Learning for 3D Surface Topology in Hydrological Applications
合作研究:OAC 核心:水文应用中 3D 表面拓扑的大规模空间机器学习
  • 批准号:
    2414185
  • 财政年份:
    2024
  • 资助金额:
    $ 17.37万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了