Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
基本信息
- 批准号:2403313
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-10-01 至 2027-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Graph Neural Networks (GNNs) have extended Deep Neural Networks’ success from independent data points to relational data points, such as observations collected on-site from environmental sensors (e.g., humidity, temperature, PM2.5, etc.) widely distributed in different spatial locations. While most existing works focus on proof-of-concept on relatively small, well-curated data, with offline settings, real-world scientific research, and applications need more capable GNN models, which can effectively learn from large-scale, real-time, geographically distributed (geo-distributed) and diversely different (heterogeneous) data. This project aims to chart a radically new cyberinfrastructure solution for training large-spatial GNNs to fill this gap. The success of this project will provide a cyberinfrastructure that overcomes the fundamental computational and communication bottlenecks for a broad range of domain science applications that rely on massive spatiotemporal prediction. The proposed algorithms and systems will be ideal for cultivating a deeper understanding of designing large machine-learning systems at a geo-distributed scale, teaching and training students and peers, and providing graduate and undergraduate students with new courses, research, and internship opportunities. This project aims to develop a comprehensive set of graph construction and partitioning methods, distributed learning algorithms, and cyberinfrastructure designs to support large-scale GNNs for real-world spatiotemporal data in geospatial scientific research and applications. The project will address significant research challenges, including (1) formulating spatiotemporal prediction within a geographically inspired graph deep learning framework, (2) enabling highly accurate, efficient, and cost-effective spatiotemporal prediction tasks across vast, geographically dispersed datasets, and (3) integrating spatial correlation, spatial heterogeneity, spatial computing parallelism, and geographic communication efficiency. The research is organized around several key research themes: (1) Creating a universal framework for constructing graphs from spatiotemporal data, determining spatial relationships, and filling in missing node attributes. (2) Developing a centralized spatiotemporal graph learning infrastructure that leverages multiple edge micro-datacenters for collaborative GNN model learning. (3) Establishing a decentralized spatiotemporal graph learning infrastructure that supports decentralized geographical multitask learning to address spatial heterogeneity.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
图神经网络 (GNN) 将深度神经网络的成功从独立数据点扩展到了关系数据点,例如从广泛分布在不同地区的环境传感器(例如湿度、温度、PM2.5 等)现场收集的观测结果虽然大多数现有的工作都集中在相对较小、精心策划的数据上进行概念验证,并且具有离线设置,但现实世界的科学研究和应用需要更强大的 GNN 模型,这些模型可以有效地从大规模、该项目旨在制定一种全新的网络基础设施解决方案,用于训练大型空间 GNN,以填补这一空白。克服了依赖于大规模时空预测的广泛领域科学应用的基本计算和通信瓶颈,所提出的算法和系统将非常适合培养对大型设计的更深入理解。该项目旨在开发一套全面的分布式图构建和分区方法,为学生和同行提供教学和培训,并为研究生和本科生提供新的课程、研究和实习机会。该项目将解决重大研究挑战,包括(1)在受地理启发的图深度学习中制定时空预测。框架,(2)在巨大的、地理上分散的数据集上实现高精度、高效且具有成本效益的时空预测任务,以及(3)集成空间相关性、空间异质性、空间计算并行性和地理通信效率。几个关键研究主题:(1)创建一个通用框架,用于从时空数据构建图、确定空间关系并填充缺失的节点属性(2)开发利用多个边的集中式时空图学习基础设施。 (3) 建立去中心化的时空图学习基础设施,支持去中心化的地理多任务学习,以解决空间异质性。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势进行评估,认为值得支持。以及更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yue Cheng其他文献
Factors affecting the intraoperative calculi excretion during flexible ureteroscopy lithotripsy: an in vitro analysis
输尿管软镜碎石术中影响术中结石排泄的因素:体外分析
- DOI:
10.1007/s00345-024-04794-9 - 发表时间:
2024-03-09 - 期刊:
- 影响因子:3.4
- 作者:
Baiyang Song;Yue Cheng;Yunfei Lu;Hao Rong;Ting Huang;Jingyu Shi;Li Fang - 通讯作者:
Li Fang
The implementation of air defense large data management application platform based on Internet of Things
基于物联网的防空大数据管理应用平台的实现
- DOI:
10.1117/12.2652803 - 发表时间:
2022-10-20 - 期刊:
- 影响因子:0
- 作者:
Li Wan;Yuemeng Li;Yue Cheng;Shuang Wang;Bochen Li - 通讯作者:
Bochen Li
ClusterOn: Building Highly Configurable and Reusable Clustered Data Services Using Simple Data Nodes
ClusterOn:使用简单数据节点构建高度可配置和可重用的集群数据服务
- DOI:
- 发表时间:
2016-06-20 - 期刊:
- 影响因子:0
- 作者:
Ali Anwar;Yue Cheng;Hai Huang;A. Butt - 通讯作者:
A. Butt
Adaptive block online learning target tracking based on super pixel segmentation
基于超像素分割的自适应分块在线学习目标跟踪
- DOI:
10.1117/12.2302930 - 发表时间:
2018-04-10 - 期刊:
- 影响因子:0
- 作者:
Yue Cheng;Jianzeng Li - 通讯作者:
Jianzeng Li
Super-resolution based generative adversarial network using visual perceptual loss function
使用视觉感知损失函数的基于超分辨率的生成对抗网络
- DOI:
- 发表时间:
2019-04-24 - 期刊:
- 影响因子:0
- 作者:
Xuan Zhu;Yue Cheng;Rongzhi Wang - 通讯作者:
Rongzhi Wang
Yue Cheng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yue Cheng', 18)}}的其他基金
SPX: Collaborative Research: Cross-stack Memory Optimizations for Boosting I/O Performance of Deep Learning HPC Applications
SPX:协作研究:用于提升深度学习 HPC 应用程序 I/O 性能的跨堆栈内存优化
- 批准号:
2318628 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAREER: Harnessing Serverless Functions to Build Highly Elastic Cloud Storage Infrastructure
职业:利用无服务器功能构建高弹性的云存储基础设施
- 批准号:
2322860 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
CAREER: Harnessing Serverless Functions to Build Highly Elastic Cloud Storage Infrastructure
职业:利用无服务器功能构建高弹性的云存储基础设施
- 批准号:
2045680 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
SPX: Collaborative Research: Cross-stack Memory Optimizations for Boosting I/O Performance of Deep Learning HPC Applications
SPX:协作研究:用于提升深度学习 HPC 应用程序 I/O 性能的跨堆栈内存优化
- 批准号:
1919075 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似国自然基金
基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
- 批准号:82304250
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠道普拉梭菌代谢物丁酸抑制心室肌铁死亡改善老龄性心功能不全的机制研究
- 批准号:82300430
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
社会网络关系对公司现金持有决策影响——基于共御风险的作用机制研究
- 批准号:72302067
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向图像目标检测的新型弱监督学习方法研究
- 批准号:62371157
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向开放域对话系统信息获取的准确性研究
- 批准号:62376067
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: OAC Core: CropDL - Scheduling and Checkpoint/Restart Support for Deep Learning Applications on HPC Clusters
合作研究:OAC 核心:CropDL - HPC 集群上深度学习应用的调度和检查点/重启支持
- 批准号:
2403088 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: CropDL - Scheduling and Checkpoint/Restart Support for Deep Learning Applications on HPC Clusters
合作研究:OAC 核心:CropDL - HPC 集群上深度学习应用的调度和检查点/重启支持
- 批准号:
2403090 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Large-Scale Spatial Machine Learning for 3D Surface Topology in Hydrological Applications
合作研究:OAC 核心:水文应用中 3D 表面拓扑的大规模空间机器学习
- 批准号:
2414185 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Learning AI Surrogate of Large-Scale Spatiotemporal Simulations for Coastal Circulation
合作研究:OAC Core:学习沿海环流大规模时空模拟的人工智能替代品
- 批准号:
2402946 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
- 批准号:
2403312 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant