CRII: OAC: A computational framework for multiscale simulation of cardiovascular disease progression connecting cell-scale biology to organ-scale hemodynamics

CRII:OAC:将细胞尺度生物学与器官尺度血流动力学连接起来的心血管疾病进展多尺度模拟的计算框架

基本信息

  • 批准号:
    2246911
  • 负责人:
  • 金额:
    $ 17.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-10-01 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

Developing computer models of cardiovascular disease growth requires an organ-scale model of blood flow, a cell-scale model of cell biology, and a framework to couple these models. Such computer models could help predict cardiovascular disease by simulating spatial and temporal patterns of disease growth. To develop these models, we need a software infrastructure that integrates modeling techniques from multiple disciplines. This project will develop software for this purpose and will apply the software to the calcific aortic valve disease (CAVD) problem, which is prevalent in aging adults. The project will also help to understand the interaction between the fundamental biological and mechanical processes involved in CAVD. The project leverages existing resources at Northern Arizona University to perform outreach activities targeting underrepresented minority students in the region. The outcome of this study will contribute to advancing the national health and improving our scientific understanding of the interaction between different processes in cardiovascular disease. During the past two decades, significant advances have been made in the development of organ-scale patient-specific computational models of cardiovascular disease. These models often focus on a specific spatial and temporal scale and their goal is to quantify biomechanical biomarkers of cardiovascular disease growth. However, quantitative information about disease growth over long time scales is missing in these models. The goal of this project is to 1) Develop a software platform for multiscale two-way coupling between organ-scale biomechanics and cell-scale systems biology models. 2) Apply the computational framework to study the long-term spatial and temporal progression of CAVD. The organ-scale model will be based on continuum solid and fluid mechanics models, and the cell-scale model will be based on systems of differential equations. The developed software infrastructure could be applied to patient-specific data to model disease progression patterns. This will enable the development of transformative models that advance our knowledge of cardiovascular disease. The project will train highly interdisciplinary researchers at the interface of software development, biomechanics, and biology. Outreach activities will promote STEM participation by demonstrating the beauty of computer science and engineering blended and applied to biomedical applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
开发心血管疾病生长的计算机模型需要器官规模的血流模型、细胞规模的细胞生物学模型以及耦合这些模型的框架。这种计算机模型可以通过模拟疾病增长的空间和时间模式来帮助预测心血管疾病。为了开发这些模型,我们需要一个集成多个学科建模技术的软件基础设施。该项目将为此目的开发软件,并将该软件应用于老年人中普遍存在的钙化性主动脉瓣疾病(CAVD)问题。该项目还将有助于了解 CAVD 所涉及的基本生物和机械过程之间的相互作用。该项目利用北亚利桑那大学的现有资源,针对该地区代表性不足的少数族裔学生开展外展活动。这项研究的结果将有助于促进国民健康并提高我们对心血管疾病不同过程之间相互作用的科学理解。在过去的二十年中,心血管疾病的器官规模患者特异性计算模型的开发取得了重大进展。这些模型通常关注特定的空间和时间尺度,其目标是量化心血管疾病生长的生物力学生物标志物。然而,这些模型中缺少有关长期疾病增长的定量信息。该项目的目标是 1) 开发一个软件平台,用于器官尺度生物力学和细胞尺度系统生物学模型之间的多尺度双向耦合。 2)应用计算框架来研究CAVD的长期空间和时间进展。器官尺度模型将基于连续固体和流体力学模型,细胞尺度模型将基于微分方程组。开发的软件基础设施可以应用于患者特定的数据来模拟疾病进展模式。这将有助于开发变革性模型,增进我们对心血管疾病的了解。该项目将在软件开发、生物力学和生物学领域培训高度跨学科的研究人员。外展活动将通过展示计算机科学和工程融合并应用于生物医学应用的美丽来促进 STEM 参与。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Aortic valve dynamics coupled with growth and remodeling due to aging and calcification
主动脉瓣动力学与衰老和钙化导致的生长和重塑相结合
Multiscale modeling of tissue growth and remodeling coupled with mechanosensitive cell-scale systems biology
组织生长和重塑的多尺度建模与力敏感细胞尺度系统生物学相结合
Fluid-structure coupled biotransport processes in aortic valve disease
主动脉瓣疾病中的流固耦合生物转运过程
  • DOI:
    10.1016/j.jbiomech.2021.110239
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Soltany Sadrabadi, Mohammadreza;Hedayat, Mohammadali;Borazjani, Iman;Arzani, Amirhossein
  • 通讯作者:
    Arzani, Amirhossein
Multiscale modeling of tissue growth and remodeling coupled with mechanosensitive cell-scale systems biology
组织生长和重塑的多尺度建模与力敏感细胞尺度系统生物学相结合
Aortic valve dynamics coupled with growth and remodeling due to aging and calcification
主动脉瓣动力学与衰老和钙化导致的生长和重塑相结合
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Amirhossein Arzani其他文献

Topological analysis of particle transport in lung airways: Predicting particle source and destination
肺气道中颗粒传输的拓扑分析:预测颗粒源和目的地
  • DOI:
    10.1016/j.compbiomed.2019.103497
  • 发表时间:
    2019-12-01
  • 期刊:
  • 影响因子:
    7.7
  • 作者:
    Ali Farghadan;F. Coletti;Amirhossein Arzani
  • 通讯作者:
    Amirhossein Arzani
Super-resolution and denoising of 4D-Flow MRI using physics-Informed deep neural nets
使用物理信息深度神经网络对 4D-Flow MRI 进行超分辨率和去噪
  • DOI:
    10.1016/j.cmpb.2020.105729
  • 发表时间:
    2020-09-15
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mojtaba F. Fathi;I. Perez;Ahmadreza Baghaie;P. Berg;G. Janiga;Amirhossein Arzani;R. D'Souza
  • 通讯作者:
    R. D'Souza
Local and global growth and remodeling in calcific aortic valve disease and aging.
钙化性主动脉瓣疾病和衰老的局部和整体生长和重塑。
  • DOI:
    10.1016/j.jbiomech.2021.110773
  • 发表时间:
    2021-09-30
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Mohammadreza Soltany Sadrabadi;M. Esk;ari;ari;H. Feigenbaum;Amirhossein Arzani
  • 通讯作者:
    Amirhossein Arzani
A critical comparison of different residence time measures in aneurysms.
动脉瘤不同停留时间测量的关键比较。
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Mirza Md Symon Reza;Amirhossein Arzani
  • 通讯作者:
    Amirhossein Arzani
Wall shear stress exposure time: a Lagrangian measure of near-wall stagnation and concentration in cardiovascular flows
壁剪切应力暴露时间:心血管血流中近壁停滞和集中的拉格朗日测量
  • DOI:
    10.1007/s10237-016-0853-7
  • 发表时间:
    2017-06-01
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Amirhossein Arzani;A. Gambaruto;Guoning Chen;S. Shadden
  • 通讯作者:
    S. Shadden

Amirhossein Arzani的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Amirhossein Arzani', 18)}}的其他基金

Collaborative Research: Enhanced 4D-Flow MRI through Deep Data Assimilation for Hemodynamic Analysis of Cardiovascular Flows
合作研究:通过深度数据同化增强 4D-Flow MRI 用于心血管血流的血流动力学分析
  • 批准号:
    2246916
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
EAGER: Understanding complex wind-driven wildfire propagation patterns with a dynamical systems approach
EAGER:通过动力系统方法了解复杂的风驱动野火传播模式
  • 批准号:
    2330212
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CAREER: Synergistic physics-based and deep learning cardiovascular flow modeling
职业:基于协同物理和深度学习的心血管血流建模
  • 批准号:
    2247173
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant
CAREER: Synergistic physics-based and deep learning cardiovascular flow modeling
职业:基于协同物理和深度学习的心血管血流建模
  • 批准号:
    2143249
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Enhanced 4D-Flow MRI through Deep Data Assimilation for Hemodynamic Analysis of Cardiovascular Flows
合作研究:通过深度数据同化增强 4D-Flow MRI 用于心血管血流的血流动力学分析
  • 批准号:
    2103434
  • 财政年份:
    2021
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Enhanced 4D-Flow MRI through Deep Data Assimilation for Hemodynamic Analysis of Cardiovascular Flows
合作研究:通过深度数据同化增强 4D-Flow MRI 用于心血管血流的血流动力学分析
  • 批准号:
    2103434
  • 财政年份:
    2021
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CRII: OAC: A computational framework for multiscale simulation of cardiovascular disease progression connecting cell-scale biology to organ-scale hemodynamics
CRII:OAC:将细胞尺度生物学与器官尺度血流动力学连接起来的心血管疾病进展多尺度模拟的计算框架
  • 批准号:
    1947559
  • 财政年份:
    2020
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant

相似国自然基金

Z8-12:OH和Z8-14:OAc分别维持梨小食心虫和李小食心虫性诱剂特异性的分子基础
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    35 万元
  • 项目类别:
    地区科学基金项目
亚硝酰钌配合物[Ru(OAc)(2mqn)2NO]的光异构反应机理研究
  • 批准号:
    21603131
  • 批准年份:
    2016
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
机械化学条件下Mn(OAc)3促进的自由基串联反应研究
  • 批准号:
    21242013
  • 批准年份:
    2012
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

CRII: OAC: A Multi-fidelity Computational Framework for Discovering Governing Equations Under Uncertainty
CRII:OAC:用于发现不确定性下控制方程的多保真度计算框架
  • 批准号:
    2348495
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CRII: OAC: A Computational Framework for Studying Transport Phenomena in Complex Networks: From Biological Towards Sustainable and Resilient Engineering Networks
CRII:OAC:研究复杂网络中传输现象的计算框架:从生物网络到可持续和弹性工程网络
  • 批准号:
    2349122
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CRII: OAC: A Computational Framework for Studying Transport Phenomena in Complex Networks: From Biological Towards Sustainable and Resilient Engineering Networks
CRII:OAC:研究复杂网络中传输现象的计算框架:从生物网络到可持续和弹性工程网络
  • 批准号:
    2105012
  • 财政年份:
    2021
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CRII: OAC: A computational framework for multiscale simulation of cardiovascular disease progression connecting cell-scale biology to organ-scale hemodynamics
CRII:OAC:将细胞尺度生物学与器官尺度血流动力学连接起来的心血管疾病进展多尺度模拟的计算框架
  • 批准号:
    1947559
  • 财政年份:
    2020
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CRII: OAC: Real-time Computational Modeling of Crop Phenological Progress towards Scalable Satellite Precision Farming
CRII:OAC:作物物候进展的实时计算建模,实现可扩展的卫星精准农业
  • 批准号:
    1849821
  • 财政年份:
    2019
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了