NSF Convergence Accelerator Track M: Bio-Inspired Surface Design for High Performance Mechanical Tracking Solar Collection Skins in Architecture
NSF Convergence Accelerator Track M:建筑中高性能机械跟踪太阳能收集表皮的仿生表面设计
基本信息
- 批准号:2344424
- 负责人:
- 金额:$ 65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-01-15 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Buildings account for 40% of carbon emissions, contributing to one of our most burdensome societal challenges – architecture in the context of climate crisis. Generating solar power on buildings is a convergent problem in engineering and architecture. By integrating creative bio-inspiration with photovoltaic (PV) systems in the early phases of design, this project will inspire widespread integration of sustainability, technology, and design for national impact together with the researchers’ industry partner, E Ink. The team will incorporate a bio-inspired design research process that will address two primary convergent problems with building integrated photovoltaics (BIPVs): 1. Single axis sun tracking with planar silicon systems can generate as much as 10-40% more energy depending on geographic location, but there is more site preparation needed and more maintenance required than conventional systems. 2. Lack of large-scale public adoption of solar panels in the residential sector is primarily due to poor design quality and aesthetics. The researchers hypothesize that beauty and sustainable design are an essential part of nature, and it has been demonstrated that solar tracking produces a photosynthetic advantage in the plant suggesting that it will be similarly beneficial for photovoltaic systems. Learning from nature, the researchers will employ a radical transdisciplinary approach to sustainability through the hybridization of labs and design studios to fuse innovations in research and industry to generate solar collection skins that leverage both aesthetics and performance. The researchers’ methodology will create a significant opportunity to excite the public, thereby engaging their interest in STEM. The intellectual merit of the project will innovate the design and engineering of PV cells through advancements in design, kirigami geometry, 3D printing, and roll-to-roll manufacturing for bio-inspired filters and skin assemblies.Specifically, the researchers will develop three bio-inspired design methods based on fundamental operations of photosynthesis in plants – heliotropism (orientation), light scattering (filters), and cellular morphological responses (modulate shape) to varied radiant exposure. Next, the team will test, extend, and optimize the bio-inspired toolkit with kirigami geometry to develop a family of module shapes that can change and morph into any global surface design, but are tailored to track the changing path of the sun. Blending biological adaptations, including cellular morphogenesis in the Arabidopsis plant and heliotropic mechanisms in sunflowers with kirigami methods, the team will investigate non-conventional surface configurations of panels. The third aim focuses on the convergence of the bio-inspired surface design strategies with the silicon material response to light and energy at the photovoltaic cell and skin levels to design and engineer for specific functions. Through a unique partnership with E Ink, the project will develop highly customized, non-standard filters and PV panel surfaces to create site-specific, beautiful, mechanical tracking solar collection skins for architecture. By leveraging the resiliency and performance of nature’s tool kit and the team’s cross-sector expertise, the project deliverable will demonstrate the first adaptable solar collection system, demonstrating the potential of bio-inspired design for a new BIPV skin that showcases an integrated approach to light absorption for energy generation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
建筑物占碳排放量的 40%,是气候危机背景下建筑面临的最沉重的社会挑战之一。通过将创造性的生物灵感与光伏相结合,在建筑物上发电是一个共同的问题。光伏)系统在设计的早期阶段,该项目将与研究人员的行业合作伙伴 E Ink 一起,激发可持续发展、技术和设计的广泛整合,以产生国家影响。地址两个主要光伏建筑一体化 (BIPV) 的集中问题: 1. 使用平面硅系统的单轴太阳跟踪可以多产生 10-40% 的能量,具体取决于地理位置,但与传统系统相比,需要更多的场地准备和更多的维护2. 住宅领域缺乏大规模公众采用太阳能电池板的主要原因是设计质量和美观性较差。研究人员认为,美丽和可持续设计是自然的重要组成部分,并且已经证明太阳能跟踪会产生影响。一个植物的光合作用优势表明它对光伏系统也同样有益。研究人员将向大自然学习,通过实验室和设计工作室的结合,采用激进的跨学科方法来实现可持续发展,融合研究和工业的创新,以产生太阳能收集皮。研究人员的方法论将创造一个激发公众兴趣的重要机会,从而激发他们对 STEM 的兴趣。该项目的智力价值将通过设计的进步来创新光伏电池的设计和工程。剪纸几何、3D 打印和卷对卷制造,用于仿生过滤器和蒙皮组件。具体来说,研究人员将开发三种基于植物光合作用基本操作的仿生设计方法——向日性(方向)、光散射接下来,该团队将使用剪纸几何来测试、扩展和优化仿生工具包以开发。该团队开发了一系列模块形状,可以改变并变形为任何全球表面设计,但经过定制以跟踪太阳变化的路径,包括拟南芥植物的细胞形态发生和向日葵的向日葵机制。将研究面板的非传统表面配置,重点是将仿生表面设计策略与硅材料在光伏电池和皮肤层面对光和能量的响应相结合进行设计。通过与 E Ink 的独特合作,该项目将开发高度定制的非标准过滤器和光伏板表面,利用弹性和性能,为建筑创建特定地点的、美观的机械跟踪太阳能收集表皮。凭借大自然工具包的性能和团队的跨部门专业知识,该项目交付成果将展示第一个适应性强的太阳能收集系统,展示新型 BIPV 表皮仿生设计的潜力,该表皮展示了光吸收能源的综合方法该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jenny Sabin其他文献
Teacher Morale, Student Engagement, and Student Achievement Growth in Reading: A Correlational Study
教师士气、学生参与度和学生阅读成绩的增长:相关研究
- DOI:
10.1016/j.appdev.2019.01.004 - 发表时间:
2015-09-22 - 期刊:
- 影响因子:3
- 作者:
Jenny Sabin - 通讯作者:
Jenny Sabin
Jenny Sabin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
通算协同的高准确、快收敛无线分布式学习优化研究
- 批准号:62301222
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多维连续变体飞行器在线动态协调轨迹规划与预设性能/收敛时间控制
- 批准号:62373124
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
数据驱动的降维优化流场加速收敛方法研究
- 批准号:12372290
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
Stokes方程的高阶元有限体积法的稳定性和收敛性
- 批准号:12301506
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Landau方程和Vlasov-Poisson-Boltzmann方程组解的适定性和收敛率的研究
- 批准号:12301284
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
NSF Convergence Accelerator Track K: Equity in water information for community capacity building
NSF 融合加速器轨道 K:社区能力建设的水信息公平
- 批准号:
2344375 - 财政年份:2024
- 资助金额:
$ 65万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track L: UAV-assisted dual-comb spectroscopic detection, localization, and quantification of multiple atmospheric trace-gas emissions
NSF 收敛加速器轨道 L:无人机辅助的双梳光谱检测、定位和多种大气痕量气体排放的量化
- 批准号:
2344395 - 财政年份:2024
- 资助金额:
$ 65万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track M: Enabling novel photonic neuromorphic devices through bridging DNA-programmable assembly and nanofabrication
NSF 融合加速器轨道 M:通过桥接 DNA 可编程组装和纳米制造实现新型光子神经形态设备
- 批准号:
2344415 - 财政年份:2024
- 资助金额:
$ 65万 - 项目类别:
Standard Grant
NSF Convergence Accelerator (L): Innovative approach to monitor methane emissions from livestock using an advanced gravimetric microsensor.
NSF Convergence Accelerator (L):使用先进的重力微传感器监测牲畜甲烷排放的创新方法。
- 批准号:
2344426 - 财政年份:2024
- 资助金额:
$ 65万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track M: Bioinspired Multispectral Imaging Technology for Intraoperative Cancer Detection
NSF 融合加速器轨道 M:用于术中癌症检测的仿生多光谱成像技术
- 批准号:
2344460 - 财政年份:2024
- 资助金额:
$ 65万 - 项目类别:
Standard Grant