Diffusions and jump processes on groups and manifolds
群和流形上的扩散和跳跃过程
基本信息
- 批准号:2343868
- 负责人:
- 金额:$ 37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-07-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Modeling scientific experiments or human activities often involves randomness. Card shuffling procedures provide a familiar, yet complex and mathematically interesting example that serves as a model for many mixing phenomena. Randomness is used to understand image restoration and recognition, communication and social networks, the behavior of financial markets, as well as in the analysis of large data sets in general. It is an important tool in the study of efficient computations and scientific simulations. In all these applications, strong structural constraints associated with the complex combinatorial or geometric structure underlying the problem determine the behavior. This project is concerned with the fundamental properties of basic stochastic processes and how the behavior of these processes relates to the global geometric structure of their different environments. Postdoctoral associates, graduate students, and undergraduate students will be mentored and trained as part of this project. The funded research focusses on random processes that are defined by a related geometric or algebraic structure (e.g., Riemannian manifolds and groups). The global behaviors of these processes are determined by this underlying structure. In some cases, these behaviors can provide information on the underlying space and its structure. These explorations are at the interface between analysis, geometry, and probability, with the notion of group structure playing a key part. Partial differential equations and potential theory, i.e. the study of harmonic functions and solutions of the heat equation, are also central. Brownian motion on Riemannian Manifolds and random walks on Cayley graphs of finitely generated groups provide key examples. The notion of stable-like processes on nilpotent groups is also studied.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
对科学实验或人类活动进行建模通常涉及随机性。洗牌过程提供了一个熟悉但复杂且数学上有趣的示例,可以作为许多混合现象的模型。随机性用于理解图像恢复和识别、通信和社交网络、金融市场的行为以及一般大型数据集的分析。它是研究高效计算和科学模拟的重要工具。在所有这些应用中,与问题背后的复杂组合或几何结构相关的强结构约束决定了行为。该项目关注基本随机过程的基本属性以及这些过程的行为如何与其不同环境的全局几何结构相关。作为该项目的一部分,博士后、研究生和本科生将接受指导和培训。 资助的研究重点是由相关几何或代数结构(例如黎曼流形和群)定义的随机过程。这些进程的全局行为是由这个底层结构决定的。在某些情况下,这些行为可以提供有关底层空间及其结构的信息。这些探索处于分析、几何和概率之间的界面,其中群结构的概念起着关键作用。偏微分方程和势论,即调和函数和热方程解的研究,也是核心。黎曼流形上的布朗运动和有限生成群的凯莱图上的随机游走提供了关键的例子。还研究了幂零群上的类稳定过程的概念。该奖项反映了 NSF 的法定使命,并且通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Laurent Saloff-Coste其他文献
Laurent Saloff-Coste的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Laurent Saloff-Coste', 18)}}的其他基金
Heat Kernels and Geometries in Discrete and Continuous Settings
离散和连续设置中的热核和几何形状
- 批准号:
2054593 - 财政年份:2021
- 资助金额:
$ 37万 - 项目类别:
Continuing Grant
Random Walks and Diffusions and Their Geometries
随机游走和扩散及其几何
- 批准号:
1707589 - 财政年份:2017
- 资助金额:
$ 37万 - 项目类别:
Standard Grant
Random walks, diffusions, semigroups, and associated geometries
随机游走、扩散、半群和相关几何
- 批准号:
1404435 - 财政年份:2014
- 资助金额:
$ 37万 - 项目类别:
Continuing Grant
Asymptotically Efficient and Efficiently Computable Bayesian Estimation
渐近有效且高效可计算的贝叶斯估计
- 批准号:
1406599 - 财政年份:2014
- 资助金额:
$ 37万 - 项目类别:
Continuing Grant
US participant support for the Instut Henri Poincare quarter program "Random Walks and the Asymptotic Geometry of Groups"
美国参与者支持 Instut Henri Poincare 季度项目“随机游走和群的渐近几何”
- 批准号:
1344959 - 财政年份:2013
- 资助金额:
$ 37万 - 项目类别:
Standard Grant
Travel Grants for US Participants, SPA Berlin 2009 33rd Conference on Stochastic Processes and Their Applications
为美国参与者提供旅费资助,2009 年柏林 SPA 第 33 届随机过程及其应用会议
- 批准号:
0855857 - 财政年份:2009
- 资助金额:
$ 37万 - 项目类别:
Standard Grant
EMSW21-RTG: Interdisciplinary Training in the Applications of Probability
EMSW21-RTG:概率应用的跨学科培训
- 批准号:
0739164 - 财政年份:2008
- 资助金额:
$ 37万 - 项目类别:
Continuing Grant
Markov Processes in Geometric Environments
几何环境中的马尔可夫过程
- 批准号:
0603886 - 财政年份:2006
- 资助金额:
$ 37万 - 项目类别:
Continuing Grant
Analysis and Geometry of Markov Chains Diffusion Processes
马尔可夫链扩散过程的分析与几何
- 批准号:
0102126 - 财政年份:2001
- 资助金额:
$ 37万 - 项目类别:
Continuing Grant
相似国自然基金
冷原子系统中跳频锁定深紫外冷却激光的产生和应用研究
- 批准号:62375284
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于微环高精度微扰鉴频滤波的光子太赫兹跳频信号生成技术研究
- 批准号:62305052
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向复杂场景的知识图谱多跳推理技术研究
- 批准号:62306156
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
热振环境下复合材料层合壁板后屈曲多稳态跳变机理和降阶模型研究
- 批准号:12302110
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高盐废水处理钙化厌氧颗粒污泥床的跳汰分层机制及调控研究
- 批准号:52300106
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Stochastic analysis focused on integration by parts formulas for jump processes
随机分析侧重于跳跃过程的零件公式积分
- 批准号:
20K03641 - 财政年份:2020
- 资助金额:
$ 37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Jump Robust Volatility Estimation and Jump Tests using Renewal Processes
使用更新过程的跳跃稳健波动率估计和跳跃测试
- 批准号:
2203142 - 财政年份:2019
- 资助金额:
$ 37万 - 项目类别:
Studentship
High-dimensional statistics for point and jump processes
点和跳跃过程的高维统计
- 批准号:
439154027 - 财政年份:2019
- 资助金额:
$ 37万 - 项目类别:
Research Grants
Systematization of calculation methods of three dimensional open channel flows based on the bottom velocity computation method and new developments of non-equilibrium sediment dynamics
基于底速计算方法的三维明渠水流计算方法体系化及非平衡沉积动力学新进展
- 批准号:
18H01546 - 财政年份:2018
- 资助金额:
$ 37万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research: Ergodic Control of Stochastic Differential Equations Driven By a Class of Pure-Jump Levy Processes, and Applications to Stochastic Networks
合作研究:一类纯跳跃 Levy 过程驱动的随机微分方程的遍历控制及其在随机网络中的应用
- 批准号:
1715875 - 财政年份:2017
- 资助金额:
$ 37万 - 项目类别:
Standard Grant