Markov Processes in Geometric Environments
几何环境中的马尔可夫过程
基本信息
- 批准号:0603886
- 负责人:
- 金额:$ 26.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-05-01 至 2011-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many basic Markov processes evolve on a state space carryinga related geometric structure. Brownian motion on a Riemannianmanifold, random walks on Cayley graphs of finitely generatedgroups and finite Markov chains on complex combinatorial structures such as trees or matchingsare all primary examples.This proposal focuses on the relationships between the behavior of such processes and the properties ofthe underlying geometric structure. It involves problems at the interface betweenanalysis, geometry and probability with a major role played bygroups and their actions. Potential theory, i.e., the study of harmonic functions and, more generally, of solutions of the heat equation,is at the center of many of these considerations.Random processes play an important role in many aspects of science andhuman activity. The study of card shuffling procedures is an entertaining yet complex and mathematically interesting example.Various random processes are used to model complex phenomena,from polymer molecules, to DNA analysis, to image restoration, to financial markets. They are also used as crucial tools for efficient computations. In such cases, there are strong structural constraints underlying the behaviorof these stochastic processes. These constraints are expressed in terms of the environment of the process which often has a complex combinatorial or geometric nature.This proposal focuses on the study of thefundamental properties of such stochastic processesand on how they relate to the global structure of the environment.
许多基本马尔可夫过程在带有相关几何结构的状态空间上演化。黎曼流形上的布朗运动、有限生成群的凯莱图上的随机游动以及复杂组合结构(例如树或匹配)上的有限马尔可夫链都是主要示例。该提案重点关注此类过程的行为与基础几何结构的属性之间的关系。它涉及分析、几何和概率之间的接口问题,其中群体及其行为发挥着主要作用。势论,即调和函数的研究,更一般地说,热方程解的研究,是许多这些考虑的核心。随机过程在科学和人类活动的许多方面发挥着重要作用。洗牌过程的研究是一个有趣但复杂且在数学上有趣的例子。各种随机过程被用来模拟复杂的现象,从聚合物分子到 DNA 分析,到图像恢复,到金融市场。它们也被用作高效计算的重要工具。在这种情况下,这些随机过程的行为背后存在强大的结构约束。这些约束以过程的环境来表达,该过程的环境通常具有复杂的组合或几何性质。本提案重点研究此类随机过程的基本属性以及它们与环境的全局结构的关系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Laurent Saloff-Coste其他文献
Laurent Saloff-Coste的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Laurent Saloff-Coste', 18)}}的其他基金
Diffusions and jump processes on groups and manifolds
群和流形上的扩散和跳跃过程
- 批准号:
2343868 - 财政年份:2024
- 资助金额:
$ 26.1万 - 项目类别:
Continuing Grant
Heat Kernels and Geometries in Discrete and Continuous Settings
离散和连续设置中的热核和几何形状
- 批准号:
2054593 - 财政年份:2021
- 资助金额:
$ 26.1万 - 项目类别:
Continuing Grant
Random Walks and Diffusions and Their Geometries
随机游走和扩散及其几何
- 批准号:
1707589 - 财政年份:2017
- 资助金额:
$ 26.1万 - 项目类别:
Standard Grant
Random walks, diffusions, semigroups, and associated geometries
随机游走、扩散、半群和相关几何
- 批准号:
1404435 - 财政年份:2014
- 资助金额:
$ 26.1万 - 项目类别:
Continuing Grant
Asymptotically Efficient and Efficiently Computable Bayesian Estimation
渐近有效且高效可计算的贝叶斯估计
- 批准号:
1406599 - 财政年份:2014
- 资助金额:
$ 26.1万 - 项目类别:
Continuing Grant
US participant support for the Instut Henri Poincare quarter program "Random Walks and the Asymptotic Geometry of Groups"
美国参与者支持 Instut Henri Poincare 季度项目“随机游走和群的渐近几何”
- 批准号:
1344959 - 财政年份:2013
- 资助金额:
$ 26.1万 - 项目类别:
Standard Grant
Heat kernel estimates and applications
热核估计和应用
- 批准号:
1004771 - 财政年份:2010
- 资助金额:
$ 26.1万 - 项目类别:
Continuing Grant
Travel Grants for US Participants, SPA Berlin 2009 33rd Conference on Stochastic Processes and Their Applications
为美国参与者提供旅费资助,2009 年柏林 SPA 第 33 届随机过程及其应用会议
- 批准号:
0855857 - 财政年份:2009
- 资助金额:
$ 26.1万 - 项目类别:
Standard Grant
EMSW21-RTG: Interdisciplinary Training in the Applications of Probability
EMSW21-RTG:概率应用的跨学科培训
- 批准号:
0739164 - 财政年份:2008
- 资助金额:
$ 26.1万 - 项目类别:
Continuing Grant
Analysis and Geometry of Markov Chains Diffusion Processes
马尔可夫链扩散过程的分析与几何
- 批准号:
0102126 - 财政年份:2001
- 资助金额:
$ 26.1万 - 项目类别:
Continuing Grant
相似国自然基金
基于深度解耦表征学习的流程工业质量预报与可解释性研究
- 批准号:62303146
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于可变Petri网的RPA流程学习和优化方法研究
- 批准号:62302306
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于智能合约的装配式建筑跨域流程协同与优化研究
- 批准号:72301068
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向全流程安全的可搜索对称加密泄露抑制技术研究
- 批准号:62372201
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
变工况模式下带钢热轧全流程分布式监测与运行状态综合评估
- 批准号:62303041
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Dynamics of maps with memory, random maps, multi-valued maps and the geometric Markov Renewal processes
具有记忆的映射动力学、随机映射、多值映射和几何马尔可夫更新过程
- 批准号:
RGPIN-2017-05321 - 财政年份:2022
- 资助金额:
$ 26.1万 - 项目类别:
Discovery Grants Program - Individual
Dynamics of maps with memory, random maps, multi-valued maps and the geometric Markov Renewal processes
具有记忆的映射动力学、随机映射、多值映射和几何马尔可夫更新过程
- 批准号:
RGPIN-2017-05321 - 财政年份:2022
- 资助金额:
$ 26.1万 - 项目类别:
Discovery Grants Program - Individual
Dynamics of maps with memory, random maps, multi-valued maps and the geometric Markov Renewal processes
具有记忆的映射动力学、随机映射、多值映射和几何马尔可夫更新过程
- 批准号:
RGPIN-2017-05321 - 财政年份:2021
- 资助金额:
$ 26.1万 - 项目类别:
Discovery Grants Program - Individual
Dynamics of maps with memory, random maps, multi-valued maps and the geometric Markov Renewal processes
具有记忆的映射动力学、随机映射、多值映射和几何马尔可夫更新过程
- 批准号:
RGPIN-2017-05321 - 财政年份:2021
- 资助金额:
$ 26.1万 - 项目类别:
Discovery Grants Program - Individual
Dynamics of maps with memory, random maps, multi-valued maps and the geometric Markov Renewal processes
具有记忆的映射动力学、随机映射、多值映射和几何马尔可夫更新过程
- 批准号:
RGPIN-2017-05321 - 财政年份:2020
- 资助金额:
$ 26.1万 - 项目类别:
Discovery Grants Program - Individual