AF:Small: Bayesian Estimation and Constraint Satisfaction

AF:Small:贝叶斯估计和约束满足

基本信息

  • 批准号:
    2342192
  • 负责人:
  • 金额:
    $ 59.93万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-03-15 至 2027-02-28
  • 项目状态:
    未结题

项目摘要

Consider a social network where individuals are nodes and connections between them represent relationships or interactions. A basic computational problem is to infer attributes of the nodes, such as subgroups among them, by only observing the connections between the nodes. The same problem arises in numerous contexts such as protein-protein interaction networks or gene regulatory networks in biology, disease spread models in epidemiology and fraud detection in financial networks. More generally, these computational problems are examples of "Bayesian estimation" which consists of determining hidden values from observations, that are often noisy and local. Greater the number of observations, it gets computationally easier to infer the hidden values. In other words, there is a tradeoff between data/observations collected vs computational resources needed. This project aims to pin-down the minimum number of observations needed to make the computational problem of inference feasible, for a large class of Bayesian inference problems. Concretely, a major theme in the project will be to precisely determine the minimum number of observations at which a powerful algorithmic technique called "sum-of-squares SDPs" can efficiently infer the hidden quantities. Bayesian estimation problems arise naturally in a vast variety of real-life applications, and the project's results will likely shed light on the computational limits for this entire class.Bayesian estimation is the problem of inferring the values of hidden variables from observed data. Formally, the problem is specified by a joint distribution over a set of hidden variables and observations. The algorithmic problem is to (even approximately) infer the hidden values given the observations, using the Bayes rule. The central focus of this project are a class of Bayesian estimation problems analogous to classical constraint satisfaction problems. Specifically, these are Bayesian estimation problems where the observations are local, in that each of them depend on a small number of hidden values, and are noisy. For brevity, we refer to these problems as ``Bayesian CSPs". They generalize a variety of models like planted CSPs, semi-random models, and stochastic block models. There is an emerging precise and comprehensive theory of computational complexity of random instances of Bayesian CSPs. Inspired by ideas from statistical physics, this theory predicts that Bayesian CSPs undergo a computational phase transition wherein they abruptly go from being computationally easy to intractable, as one increases the number of observations This project will pursue the following research directions.1. (SoS lower bounds) Sum-of-squares SDPs are one of the most powerful and general algorithmic techniques known. The project will establish lower bounds for sum-of-squares SDPs as evidence towards computational hardness of random Bayesian CSPs upto the predicted computational phase transition.2. (Reductions) Classical complexity theory compares computational difficulty of different problems by reducing problems to each other. This project aims to develop polynomial-time reductions between different Bayesian CSPs or the same Bayesian CSP in different parameter regimes. 3. (Beyond random instances) The project will transfer algorithmic insights developed in the context of random Bayesian CSPs, to worst-case settings.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
考虑一个社交网络,其中个体是节点,他们之间的连接代表关系或交互。 一个基本的计算问题是通过仅观察节点之间的连接来推断节点的属性,例如它们之间的子组。 同样的问题出现在许多环境中,例如生物学中的蛋白质-蛋白质相互作用网络或基因调控网络、流行病学中的疾病传播模型以及金融网络中的欺诈检测。 更一般地说,这些计算问题是“贝叶斯估计”的示例,其中包括从观察中确定隐藏值,这些值通常是有噪声的和局部的。 观察数量越多,在计算上就越容易推断出隐藏值。 换句话说,收集的数据/观察与所需的计算资源之间存在权衡。 该项目旨在针对一大类贝叶斯推理问题,确定使推理计算问题可行所需的最小观察数量。 具体来说,该项目的一个主要主题将是精确确定最小观测数量,在该数量下,称为“平方和 SDP”的强大算法技术可以有效地推断隐藏量。 贝叶斯估计问题在各种各样的现实应用中自然出现,该项目的结果可能会揭示整个类别的计算限制。贝叶斯估计是从观测数据推断隐藏变量值的问题。 形式上,该问题由一组隐藏变量和观测值的联合分布来指定。 算法问题是使用贝叶斯规则(甚至近似地)根据观察结果推断隐藏值。 该项目的中心焦点是一类类似于经典约束满足问题的贝叶斯估计问题。 具体来说,这些是贝叶斯估计问题,其中观测值是局部的,因为每个观测值都依赖于少量隐藏值,并且有噪声。 为了简洁起见,我们将这些问题称为“贝叶斯 CSP”。它们概括了各种模型,如植入 CSP、半随机模型和随机块模型。有一种新兴的精确且全面的随机实例计算复杂性理论受统计物理学思想的启发,该理论预测贝叶斯 CSP 会经历计算相变,随着数量的增加,它们会突然从计算容易变得难以处理。观察结果 该项目将追求以下研究方向:1.(SoS 下界)平方和 SDP 是已知的最强大和通用的算法技术之一。该项目将建立平方和 SDP 的下界:随机贝叶斯 CSP 的计算难度与预测的计算相变的证据。2.(简化)经典复杂性理论通过相互简化问题来比较不同问题的计算难度。 该项目旨在开发不同贝叶斯 CSP 之间或不同参数状态下相同贝叶斯 CSP 之间的多项式时间缩减。 3.(超越随机实例)该项目将把在随机贝叶斯 CSP 背景下开发的算法见解转移到最坏的情况设置。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的评估进行评估,被认为值得支持影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Prasad Raghavendra其他文献

List Decodable Subspace Recovery
列表可解码子空间恢复
Robust Recovery for Stochastic Block Models, Simplified and Generalized
简化和广义随机块模型的鲁棒恢复
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
近似、随机化和组合优化。
  • DOI:
    10.1007/978-3-642-40328-6
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Prasad Raghavendra;Sofya Raskhodnikova;Klaus Jansen;José D. P. Rolim
  • 通讯作者:
    José D. P. Rolim
Electronic Colloquium on Computational Complexity, Report No. 27 (2011) Beating the Random Ordering is Hard: Every ordering CSP is approximation resistant ¶
计算复杂性电子研讨会,第 27 号报告 (2011) 击败随机排序很难:每个排序 CSP 都具有近似抵抗性 ¶
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    V. Guruswami;Johan Håstad;R. Manokaran;Prasad Raghavendra;Moses Charikar
  • 通讯作者:
    Moses Charikar
Theory of Computing
计算理论
  • DOI:
    10.4086/toc
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alexandr Andoni;Nikhil Bansal;P. Beame;Giuseppe Italiano;Sanjeev Khanna;Ryan O’Donnell;T. Pitassi;T. Rabin;Tim Roughgarden;Clifford Stein;Rocco Servedio;Amir Abboud;Nima Anari;Ibm Srinivasan Arunachalam;T. J. Watson;Research Center;Petra Berenbrink;Aaron Bernstein;Aditya Bhaskara;Sayan Bhattacharya;Eric Blais;H. Bodlaender;Adam Bouland;Anne Broadbent;Mark Bun;Timothy Chan;Arkadev Chattopadhyay;Xue Chen;Gil Cohen;Dana Dachman;Anindya De;Shahar Dobzhinski;Zhiyi Huang;Ken;Robin Kothari;Marvin Künnemann;Tu Kaiserslautern;Rasmus Kyng;E. Zurich;Sophie Laplante;D. Lokshtanov;S. Mahabadi;Nicole Megow;Ankur Moitra;Technion Shay Moran;Google Research;Christopher Musco;Prasad Raghavendra;Alex Russell;Laura Sanità;Alex Slivkins;David Steurer;Epfl Ola Svensson;Chaitanya Swamy;Madhur Tulsiani;Christos Tzamos;Andreas Wiese;Mary Wootters;Huacheng Yu;Aaron Potechin;Aaron Sidford;Aarushi Goel;Aayush Jain;Abhiram Natarajan;Abhishek Shetty;Adam Karczmarz;Adam O’Neill;Aditi Dudeja;Aditi Laddha;Aditya Krishnan;Adrian Vladu Afrouz;J. Ameli;Ainesh Bakshi;Akihito Soeda;Akshay Krishnamurthy;Albert Cheu;A. Grilo;Alex Wein;Alexander Belov;Alexander Block;Alexander Golovnev;Alexander Poremba;Alexander Shen;Alexander Skopalik;Alexandra Henzinger;Alexandros Hollender;Ali Parviz;Alkis Kalavasis;Allen Liu;Aloni Cohen;Amartya Shankha;Biswas Amey;Bhangale Amin;Coja;Yehudayoff Amir;Zandieh Amit;Daniely Amit;Kumar Amnon;Ta;Beimel Anand;Louis Anand Natarajan;Anders Claesson;André Chailloux;André Nusser;Andrea Coladangelo;Andrea Lincoln;Andreas Björklund;Andreas Maggiori;A. Krokhin;A. Romashchenko;Andrej Risteski;Anirban Chowdhury;Anirudh Krishna;A. Mukherjee;Ankit Garg;Anna Karlin;Anthony Leverrier;Antonio Blanca;A. Antoniadis;Anupam Gupta;Anupam Prakash;A. Singh;Aravindan Vijayaraghavan;Argyrios Deligkas;Ariel Kulik;Ariel Schvartzman;Ariel Shaulker;A. Cornelissen;Arka Rai;Choudhuri Arkady;Yerukhimovich Arnab;Bhattacharyya Arthur Mehta;Artur Czumaj;A. Backurs;A. Jambulapati;Ashley Montanaro;A. Sah;A. Mantri;Aviad Rubinstein;Avishay Tal;Badih Ghazi;Bartek Blaszczyszyn;Benjamin Moseley;Benny Pinkas;Bento Natura;Bernhard Haeupler;Bill Fefferman;B. Mance;Binghui Peng;Bingkai Lin;B. Sinaimeri;Bo Waggoner;Bodo Manthey;Bohdan Kivva;Brendan Lucier Bundit;Laekhanukit Burak;Sahinoglu Cameron;Seth Chaodong Zheng;Charles Carlson;Chen;Chenghao Guo;Chenglin Fan;Chenwei Wu;Chethan Kamath;Chi Jin;J. Thaler;Jyun;Kaave Hosseini;Kaito Fujii;Kamesh Munagala;Kangning Wang;Kanstantsin Pashkovich;Karl Bringmann Karol;Wegrzycki Karteek;Sreenivasaiah Karthik;Chandrasekaran Karthik;Sankararaman Karthik;C. S. K. Green;Larsen Kasturi;Varadarajan Keita;Xagawa Kent Quanrud;Kevin Schewior;Kevin Tian;Kilian Risse;Kirankumar Shiragur;K. Pruhs;K. Efremenko;Konstantin Makarychev;Konstantin Zabarnyi;Krišj¯anis Pr¯usis;Kuan Cheng;Kuikui Liu;Kunal Marwaha;Lars Rohwedder László;Kozma László;A. Végh;L'eo Colisson;Leo de Castro;Leonid Barenboim Letong;Li;Li;L. Roditty;Lieven De;Lathauwer Lijie;Chen Lior;Eldar Lior;Rotem Luca Zanetti;Luisa Sinisclachi;Luke Postle;Luowen Qian;Lydia Zakynthinou;Mahbod Majid;Makrand Sinha;Malin Rau Manas;Jyoti Kashyop;Manolis Zampetakis;Maoyuan Song;Marc Roth;Marc Vinyals;Marcin Bieńkowski;Marcin Pilipczuk;Marco Molinaro;Marcus Michelen;Mark de Berg;M. Jerrum;Mark Sellke;Mark Zhandry;Markus Bläser;Markus Lohrey;Marshall Ball;Marthe Bonamy;Martin Fürer;Martin Hoefer;M. Kokainis;Masahiro Hachimori;Matteo Castiglioni;Matthias Englert;Matti Karppa;Max Hahn;Max Hopkins;Maximilian Probst;Gutenberg Mayank Goswami;Mehtaab Sawhney;Meike Hatzel;Meng He;Mengxiao Zhang;Meni Sadigurski;M. Parter;M. Dinitz;Michael Elkin;Michael Kapralov;Michael Kearns;James R. Lee;Sudatta Bhattacharya;Michal Koucký;Hadley Black;Deeparnab Chakrabarty;C. Seshadhri;Mahsa Derakhshan;Naveen Durvasula;Nika Haghtalab;Peter Kiss;Thatchaphol Saranurak;Soheil Behnezhad;M. Roghani;Hung Le;Shay Solomon;Václav Rozhon;Anders Martinsson;Christoph Grunau;G. Z. —. Eth;Zurich;Switzerland;Morris Yau — Massachusetts;Noah Golowich;Dhruv Rohatgi — Massachusetts;Qinghua Liu;Praneeth Netrapalli;Csaba Szepesvári;Debarati Das;Jacob Gilbert;Mohammadtaghi Hajiaghayi;Tomasz Kociumaka;B. Saha;K. Bringmann;Nick Fischer — Weizmann;Ce Jin;Yinzhan Xu — Massachusetts;Virginia Vassilevska Williams;Yinzhan Xu;Josh Alman;Kevin Rao;Hamed Hatami;—. XiangMeng;McGill University;Edith Cohen;Xin Lyu;Tamás Jelani Nelson;Uri Stemmer — Google;Research;Daniel Alabi;Pravesh K. Kothari;Pranay Tankala;Prayaag Venkat;Fred Zhang;Samuel B. Hopkins;Gautam Kamath;Shyam Narayanan — Massachusetts;Marco Gaboardi;R. Impagliazzo;Rex Lei;Satchit Sivakumar;Jessica Sorrell;T. Korhonen;Marco Bressan;Matthias Lanzinger;Huck Bennett;Mahdi Cheraghchi;V. Guruswami;João Ribeiro;Jan Dreier;Nikolas Mählmann;Sebastian Siebertz — TU Wien;The Randomized k ;Conjecture Is;False;Sébastien Bubeck;Christian Coester;Yuval Rabani — Microsoft;Wei;Ethan Mook;Daniel Wichs;Joshua Brakensiek;Sai Sandeep — Stanford;University;Lorenzo Ciardo;Stanislav Živný;Amey Bhangale;Subhash Khot;Dor Minzer;David Ellis;Guy Kindler;Noam Lifshitz;Ronen Eldan;Dan Mikulincer;George Christodoulou;E. Koutsoupias;Annamária Kovács;José Correa;Andrés Cristi;Xi Chen;Matheus Venturyne;Xavier Ferreira;David C. Parkes;Yang Cai;Jinzhao Wu;Zhengyang Liu;Zeyu Ren;Zihe Wang;Ravishankar Krishnaswamy;Shi Li;Varun Suriyanarayana
  • 通讯作者:
    Varun Suriyanarayana

Prasad Raghavendra的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Prasad Raghavendra', 18)}}的其他基金

AF:Small: Semidefinite Programming for High-dimensional Statistics
AF:Small:高维统计的半定规划
  • 批准号:
    2007676
  • 财政年份:
    2020
  • 资助金额:
    $ 59.93万
  • 项目类别:
    Standard Grant
AF:Small:Mathematical Programming for Average-Case Problems
AF:Small:平均情况问题的数学规划
  • 批准号:
    1718695
  • 财政年份:
    2017
  • 资助金额:
    $ 59.93万
  • 项目类别:
    Standard Grant
AF: Medium: Collaborative Research: On the Power of Mathematical Programming in Combinatorial Optimization
AF:媒介:协作研究:论组合优化中数学规划的力量
  • 批准号:
    1408643
  • 财政年份:
    2014
  • 资助金额:
    $ 59.93万
  • 项目类别:
    Continuing Grant
CAREER: Approximating NP-Hard Problems -Efficient Algorithms and their Limits
职业:近似 NP 难问题 - 高效算法及其局限性
  • 批准号:
    1149843
  • 财政年份:
    2012
  • 资助金额:
    $ 59.93万
  • 项目类别:
    Continuing Grant
CAREER: Approximating NP-Hard Problems -Efficient Algorithms and their Limits
职业:近似 NP 难问题 - 高效算法及其局限性
  • 批准号:
    1343104
  • 财政年份:
    2012
  • 资助金额:
    $ 59.93万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于眼-脑跨模态影像构建稀疏贝叶斯线性回归模型预测脑小血管病程度的研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
基于贝叶斯理论的复合材料Lamb波小波谱元法研究
  • 批准号:
    51805548
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
小空间尺度下‘零膨胀’时空数据的统计建模
  • 批准号:
    41801312
  • 批准年份:
    2018
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
基于多小波与贝叶斯网络的水电机组故障诊断研究
  • 批准号:
    51379160
  • 批准年份:
    2013
  • 资助金额:
    80.0 万元
  • 项目类别:
    面上项目
抽样调查中的小域估计方法研究
  • 批准号:
    11301514
  • 批准年份:
    2013
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Development of a multi-RNA signature in blood towards a rapid diagnostic test to robustly distinguish patients with acute myocardial infarction
开发血液中的多 RNA 特征以进行快速诊断测试,以强有力地区分急性心肌梗死患者
  • 批准号:
    10603548
  • 财政年份:
    2023
  • 资助金额:
    $ 59.93万
  • 项目类别:
Nominating vulnerabilities in fusion oncoprotein-driven rhabdomyosarcoma
提名融合癌蛋白驱动的横纹肌肉瘤的脆弱性
  • 批准号:
    10642101
  • 财政年份:
    2023
  • 资助金额:
    $ 59.93万
  • 项目类别:
From genotype to phenotype in a GWAS locus: the role of REST in atherosclerosis
GWAS 位点从基因型到表型:REST 在动脉粥样硬化中的作用
  • 批准号:
    10570469
  • 财政年份:
    2023
  • 资助金额:
    $ 59.93万
  • 项目类别:
Platform to support clinical variant interpretation through probabilistic assessment of functional evidence
通过功能证据的概率评估支持临床变异解释的平台
  • 批准号:
    10742133
  • 财政年份:
    2023
  • 资助金额:
    $ 59.93万
  • 项目类别:
Leveraging remote blood pressure monitoring and interpretable machine learning to improve clinical workflows for hypertensive disorders of pregnancy
利用远程血压监测和可解释的机器学习来改善妊娠期高血压疾病的临床工作流程
  • 批准号:
    10822625
  • 财政年份:
    2023
  • 资助金额:
    $ 59.93万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了