Leveraging remote blood pressure monitoring and interpretable machine learning to improve clinical workflows for hypertensive disorders of pregnancy
利用远程血压监测和可解释的机器学习来改善妊娠期高血压疾病的临床工作流程
基本信息
- 批准号:10822625
- 负责人:
- 金额:$ 27.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-18 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AdoptedAmerican College of Obstetricians and GynecologistsAspirinBayesian MethodBayesian learningBlood PressureBlood Pressure MonitorsCaringClinicalCommunicationCommunitiesComplexComputer softwareCounselingDataData SourcesDevelopmentDevicesDiagnosisDiscipline of obstetricsDocumentationEarly InterventionEarly identificationEclampsiaElectronic Health RecordElectronicsEligibility DeterminationFamilyFeedbackFirst Pregnancy TrimesterFocus GroupsFrequenciesFutureGeographyGrantGrowthHealthHomeHypertensionIncidenceInfantInterventionMachine LearningMeasurementMeasuresMedicalMethodsModelingMonitorNurse MidwivesOutcomePatient EducationPatient MonitoringPatient riskPatientsPerformancePersonsPhasePhenotypePre-EclampsiaPregnancyPrenatal careProphylactic treatmentProviderQualitative ResearchResearchRiskRisk FactorsRisk ReductionSmall Business Innovation Research GrantSystemTimeTrainingUltrasonographyUnited StatesUpdateVisitclinically actionabledashboarddesignelectronic health dataflexibilityimprovedlifestyle interventionmachine learning methodmachine learning modelmobile applicationmodel buildingnutritionpatient populationphase 1 studypredictive modelingpregnancy disorderpregnancy hypertensionpregnancy related deathpregnantprepregnancypreventprophylacticprospectivestandard of caretool
项目摘要
Project Summary/Abstract:
Hypertensive disorders of pregnancy (HDP) are a leading cause of pregnancy-related deaths in the United
States. Specific interventions, such as nutrition counseling and prophylactic aspirin use, are known to prevent
the onset and exacerbation of HDP. However, current approaches to identify patients early in pregnancy are
limited due to challenges collating patient data from the electronic health record (EHR) and low precision and
recall of traditional rules-based medical calculators. Machine learning (ML) methods that can flexibly capture
complex relationships between HDP risk factors offer a potential solution, but often only render a static
prediction at one time point and do not update as additional information is collected during pregnancy. The
objective of this project is to develop a clinically actionable machine learning model that updates dynamically
as patients track blood pressure throughout their pregnancies.
Specifically, in Aim 1, we will assess the increased predictive power of utilizing blood pressure
measurements arising from remote blood pressure monitoring (RBPM) as compared to in-office
measurements. We will phenotype patient blood pressure trajectories and investigate associations between
phenotypes and HDP diagnosis. In Aim 2, we will use a Bayesian machine learning approach to incorporate
the RBPM phenotypes developed in Aim 1 to enhance an existing static HDP model built on EHR data. The
developed model will be able to assess patients at multiple time points throughout their pregnancy based on
their at-home BP measures. Finally, in Aim 3, we will conduct a mixed-methods study with obstetricians and
certified nurse midwives to build a user-centered display that effectively communicates the results from the
dynamic model.
The project outlined in this proposal will give obstetricians a clinically interpretable tool – BotoML – to
help them identify patients that would benefit from intervention early in their pregnancy. The completion of
these aims will enable a future Phase II to deploy and prospectively validate BotoML in geographically diverse
provider and patient populations.
项目摘要/摘要:
妊娠期高血压疾病 (HDP) 是美国妊娠相关死亡的主要原因
众所周知,具体的干预措施,例如营养咨询和预防性使用阿司匹林,可以预防疾病。
然而,目前识别怀孕早期患者的方法是
由于整理电子健康记录 (EHR) 中患者数据的挑战以及低精度和
回顾传统的基于规则的医疗计算器,可以灵活地捕获数据。
HDP 风险因素之间的复杂关系提供了潜在的解决方案,但通常只能呈现静态
预测仅在某一时间点进行,并且不会随着怀孕期间收集的其他信息而更新。
该项目的目标是开发一种可动态更新的临床可行的机器学习模型
因为患者在整个怀孕期间都会跟踪血压。
具体来说,在目标 1 中,我们将评估利用血压的增强预测能力
与办公室内血压监测相比,远程血压监测 (RBPM) 产生的测量结果
我们将对患者血压轨迹进行表型分析并研究之间的关联。
在目标 2 中,我们将使用贝叶斯机器学习方法来整合表型和 HDP 诊断。
目标 1 中开发的 RBPM 表型旨在增强基于 EHR 数据构建的现有静态 HDP 模型。
开发的模型将能够根据患者在整个怀孕期间的多个时间点对患者进行评估
最后,在目标 3 中,我们将与产科医生和医生进行混合方法研究。
经过认证的护士助产士建立一个以用户为中心的显示器,有效地传达助产士的结果
动态模型。
该提案中概述的项目将为产科医生提供一种临床可解释的工具——BotoML——
帮助他们识别可从妊娠早期干预中受益的患者。
这些目标将使未来的第二阶段能够在不同地理位置部署和前瞻性验证 BotoML
提供者和患者群体。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Isabel Fulcher其他文献
Isabel Fulcher的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Improving the Quality of Prenatal Care for Low-Income, Black Women
提高低收入黑人女性的产前护理质量
- 批准号:
10557518 - 财政年份:2023
- 资助金额:
$ 27.57万 - 项目类别:
Developing Extracellular Vesicle Based MPRINT Translational Resource Platform for Monitoring Therapeutics Response During Pregnancy
开发基于细胞外囊泡的 MPRINT 转化资源平台,用于监测妊娠期间的治疗反应
- 批准号:
10747545 - 财政年份:2023
- 资助金额:
$ 27.57万 - 项目类别:
Improving the Quality of Prenatal Care for Low-Income, Urban, Black Women
提高低收入城市黑人妇女的产前护理质量
- 批准号:
10539277 - 财政年份:2019
- 资助金额:
$ 27.57万 - 项目类别:
Improving the Quality of Prenatal Care for Low-Income, Urban, Black Women
提高低收入城市黑人妇女的产前护理质量
- 批准号:
10308472 - 财政年份:2019
- 资助金额:
$ 27.57万 - 项目类别:
Improving the Quality of Prenatal Care for Low-Income, Urban, Black Women
提高低收入城市黑人妇女的产前护理质量
- 批准号:
10065518 - 财政年份:2019
- 资助金额:
$ 27.57万 - 项目类别: