AF:Small: Semidefinite Programming for High-dimensional Statistics

AF:Small:高维统计的半定规划

基本信息

  • 批准号:
    2007676
  • 负责人:
  • 金额:
    $ 45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

With the deluge of data in almost all areas of human endeavor, there is a growing need for efficient algorithms to uncover underlying patterns and make inferences from the data. The field of statistics has long studied the task of making inferences from data, while largely ignoring issues of computational efficiency, but instead focusing on the quantity of data needed. As data gets increasingly high-dimensional, noisy and corrupted, computational efficiency becomes a vital concern. This project will use the powerful technique of semidefinite programming arising from optimization towards computational tasks in high-dimensional statistics. Specifically, the goal of this research is to develop a systematic approach for using semidefinite programming to design algorithms in high-dimensional statistics. The project will lead to an exchange of problems, definitions and technical tools between the areas of algorithms, statistics and statistical physics. The project includes synergistic educational and outreach activities such as devising a graduate class on complexity of statistics, facilitating undergraduate and graduate research work.There are three central themes to this research work. First, exploiting structure, how can algorithms based on semidefinite programming (SDP) exploit distributional assumptions about the input? More precisely, what is the correct way to encode information about the prior distribution of the input into the SDP-based algorithm? Second, how can algorithms be designed that are robust to noise, outliers or large deviations in the data? In its extreme form, how algorithms be designed with guarantees even in presence of an overwhelming number of outliers? Finally, using techniques inspired by statistical physics, many statistical problems are conjectured to exhibit a sudden change in their computational complexity -- a "computational phase transition". Can the lens of SDP be used to shed more light on these computational phase transitions? The proposed research would not only lead to a flurry of new SDP-based algorithms for this class of problems, but also potentially yield algorithms that provably match the performance of belief-propagation/message-passing algorithms, an algorithmic approach believed to be optimal for Bayesian inference.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着人类活动几乎所有领域的数据泛滥,越来越需要有效的算法来揭示潜在模式并从数据中进行推理。 统计学领域长期以来研究从数据中进行推理的任务,但很大程度上忽略了计算效率问题,而是关注所需数据的数量。 随着数据变得越来越高维、嘈杂和损坏,计算效率成为一个至关重要的问题。 该项目将使用半定规划的强大技术,该技术源自高维统计中计算任务的优化。 具体来说,本研究的目标是开发一种使用半定规划设计高维统计算法的系统方法。 该项目将促进算法、统计学和统计物理学领域之间问题、定义和技术工具的交流。 该项目包括协同教育和推广活动,例如设计统计复杂性研究生课程、促进本科生和研究生的研究工作。这项研究工作有三个中心主题。 首先,利用结构,基于半定规划(SDP)的算法如何利用关于输入的分布假设? 更准确地说,将有关输入先验分布的信息编码到基于 SDP 的算法中的正确方法是什么? 其次,如何设计对数据中的噪声、异常值或大偏差具有鲁棒性的算法? 在极端情况下,即使存在大量异常值,如何设计算法并保证? 最后,利用受统计物理学启发的技术,许多统计问题被推测会表现出计算复杂性的突然变化——“计算相变”。 SDP 的镜头可以用来更多地了解这些计算相变吗? 所提出的研究不仅会带来一系列针对此类问题的基于 SDP 的新算法,而且还可能产生可证明与置信传播/消息传递算法性能相匹配的算法,这种算法被认为是解决此类问题的最佳算法。贝叶斯推理。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Matrix discrepancy from Quantum communication
量子通信的矩阵差异
  • DOI:
    10.1145/3519935.3519954
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hopkins, Samuel B.;Raghavendra, Prasad;Shetty, Abhishek
  • 通讯作者:
    Shetty, Abhishek
Local Statistics, Semidefinite Programming, and Community Detection*
局部统计、半定规划和社区检测*
On statistical inference when fixed points of belief propagation are unstable
置信传播不稳定点时的统计推断
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Prasad Raghavendra其他文献

List Decodable Subspace Recovery
列表可解码子空间恢复
Robust Recovery for Stochastic Block Models, Simplified and Generalized
简化和广义随机块模型的鲁棒恢复
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
近似、随机化和组合优化。
  • DOI:
    10.1007/978-3-642-40328-6
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Prasad Raghavendra;Sofya Raskhodnikova;Klaus Jansen;José D. P. Rolim
  • 通讯作者:
    José D. P. Rolim
Electronic Colloquium on Computational Complexity, Report No. 27 (2011) Beating the Random Ordering is Hard: Every ordering CSP is approximation resistant ¶
计算复杂性电子研讨会,第 27 号报告 (2011) 击败随机排序很难:每个排序 CSP 都具有近似抵抗性 ¶
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    V. Guruswami;Johan Håstad;R. Manokaran;Prasad Raghavendra;Moses Charikar
  • 通讯作者:
    Moses Charikar
Theory of Computing
计算理论
  • DOI:
    10.4086/toc
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alexandr Andoni;Nikhil Bansal;P. Beame;Giuseppe Italiano;Sanjeev Khanna;Ryan O’Donnell;T. Pitassi;T. Rabin;Tim Roughgarden;Clifford Stein;Rocco Servedio;Amir Abboud;Nima Anari;Ibm Srinivasan Arunachalam;T. J. Watson;Research Center;Petra Berenbrink;Aaron Bernstein;Aditya Bhaskara;Sayan Bhattacharya;Eric Blais;H. Bodlaender;Adam Bouland;Anne Broadbent;Mark Bun;Timothy Chan;Arkadev Chattopadhyay;Xue Chen;Gil Cohen;Dana Dachman;Anindya De;Shahar Dobzhinski;Zhiyi Huang;Ken;Robin Kothari;Marvin Künnemann;Tu Kaiserslautern;Rasmus Kyng;E. Zurich;Sophie Laplante;D. Lokshtanov;S. Mahabadi;Nicole Megow;Ankur Moitra;Technion Shay Moran;Google Research;Christopher Musco;Prasad Raghavendra;Alex Russell;Laura Sanità;Alex Slivkins;David Steurer;Epfl Ola Svensson;Chaitanya Swamy;Madhur Tulsiani;Christos Tzamos;Andreas Wiese;Mary Wootters;Huacheng Yu;Aaron Potechin;Aaron Sidford;Aarushi Goel;Aayush Jain;Abhiram Natarajan;Abhishek Shetty;Adam Karczmarz;Adam O’Neill;Aditi Dudeja;Aditi Laddha;Aditya Krishnan;Adrian Vladu Afrouz;J. Ameli;Ainesh Bakshi;Akihito Soeda;Akshay Krishnamurthy;Albert Cheu;A. Grilo;Alex Wein;Alexander Belov;Alexander Block;Alexander Golovnev;Alexander Poremba;Alexander Shen;Alexander Skopalik;Alexandra Henzinger;Alexandros Hollender;Ali Parviz;Alkis Kalavasis;Allen Liu;Aloni Cohen;Amartya Shankha;Biswas Amey;Bhangale Amin;Coja;Yehudayoff Amir;Zandieh Amit;Daniely Amit;Kumar Amnon;Ta;Beimel Anand;Louis Anand Natarajan;Anders Claesson;André Chailloux;André Nusser;Andrea Coladangelo;Andrea Lincoln;Andreas Björklund;Andreas Maggiori;A. Krokhin;A. Romashchenko;Andrej Risteski;Anirban Chowdhury;Anirudh Krishna;A. Mukherjee;Ankit Garg;Anna Karlin;Anthony Leverrier;Antonio Blanca;A. Antoniadis;Anupam Gupta;Anupam Prakash;A. Singh;Aravindan Vijayaraghavan;Argyrios Deligkas;Ariel Kulik;Ariel Schvartzman;Ariel Shaulker;A. Cornelissen;Arka Rai;Choudhuri Arkady;Yerukhimovich Arnab;Bhattacharyya Arthur Mehta;Artur Czumaj;A. Backurs;A. Jambulapati;Ashley Montanaro;A. Sah;A. Mantri;Aviad Rubinstein;Avishay Tal;Badih Ghazi;Bartek Blaszczyszyn;Benjamin Moseley;Benny Pinkas;Bento Natura;Bernhard Haeupler;Bill Fefferman;B. Mance;Binghui Peng;Bingkai Lin;B. Sinaimeri;Bo Waggoner;Bodo Manthey;Bohdan Kivva;Brendan Lucier Bundit;Laekhanukit Burak;Sahinoglu Cameron;Seth Chaodong Zheng;Charles Carlson;Chen;Chenghao Guo;Chenglin Fan;Chenwei Wu;Chethan Kamath;Chi Jin;J. Thaler;Jyun;Kaave Hosseini;Kaito Fujii;Kamesh Munagala;Kangning Wang;Kanstantsin Pashkovich;Karl Bringmann Karol;Wegrzycki Karteek;Sreenivasaiah Karthik;Chandrasekaran Karthik;Sankararaman Karthik;C. S. K. Green;Larsen Kasturi;Varadarajan Keita;Xagawa Kent Quanrud;Kevin Schewior;Kevin Tian;Kilian Risse;Kirankumar Shiragur;K. Pruhs;K. Efremenko;Konstantin Makarychev;Konstantin Zabarnyi;Krišj¯anis Pr¯usis;Kuan Cheng;Kuikui Liu;Kunal Marwaha;Lars Rohwedder László;Kozma László;A. Végh;L'eo Colisson;Leo de Castro;Leonid Barenboim Letong;Li;Li;L. Roditty;Lieven De;Lathauwer Lijie;Chen Lior;Eldar Lior;Rotem Luca Zanetti;Luisa Sinisclachi;Luke Postle;Luowen Qian;Lydia Zakynthinou;Mahbod Majid;Makrand Sinha;Malin Rau Manas;Jyoti Kashyop;Manolis Zampetakis;Maoyuan Song;Marc Roth;Marc Vinyals;Marcin Bieńkowski;Marcin Pilipczuk;Marco Molinaro;Marcus Michelen;Mark de Berg;M. Jerrum;Mark Sellke;Mark Zhandry;Markus Bläser;Markus Lohrey;Marshall Ball;Marthe Bonamy;Martin Fürer;Martin Hoefer;M. Kokainis;Masahiro Hachimori;Matteo Castiglioni;Matthias Englert;Matti Karppa;Max Hahn;Max Hopkins;Maximilian Probst;Gutenberg Mayank Goswami;Mehtaab Sawhney;Meike Hatzel;Meng He;Mengxiao Zhang;Meni Sadigurski;M. Parter;M. Dinitz;Michael Elkin;Michael Kapralov;Michael Kearns;James R. Lee;Sudatta Bhattacharya;Michal Koucký;Hadley Black;Deeparnab Chakrabarty;C. Seshadhri;Mahsa Derakhshan;Naveen Durvasula;Nika Haghtalab;Peter Kiss;Thatchaphol Saranurak;Soheil Behnezhad;M. Roghani;Hung Le;Shay Solomon;Václav Rozhon;Anders Martinsson;Christoph Grunau;G. Z. —. Eth;Zurich;Switzerland;Morris Yau — Massachusetts;Noah Golowich;Dhruv Rohatgi — Massachusetts;Qinghua Liu;Praneeth Netrapalli;Csaba Szepesvári;Debarati Das;Jacob Gilbert;Mohammadtaghi Hajiaghayi;Tomasz Kociumaka;B. Saha;K. Bringmann;Nick Fischer — Weizmann;Ce Jin;Yinzhan Xu — Massachusetts;Virginia Vassilevska Williams;Yinzhan Xu;Josh Alman;Kevin Rao;Hamed Hatami;—. XiangMeng;McGill University;Edith Cohen;Xin Lyu;Tamás Jelani Nelson;Uri Stemmer — Google;Research;Daniel Alabi;Pravesh K. Kothari;Pranay Tankala;Prayaag Venkat;Fred Zhang;Samuel B. Hopkins;Gautam Kamath;Shyam Narayanan — Massachusetts;Marco Gaboardi;R. Impagliazzo;Rex Lei;Satchit Sivakumar;Jessica Sorrell;T. Korhonen;Marco Bressan;Matthias Lanzinger;Huck Bennett;Mahdi Cheraghchi;V. Guruswami;João Ribeiro;Jan Dreier;Nikolas Mählmann;Sebastian Siebertz — TU Wien;The Randomized k ;Conjecture Is;False;Sébastien Bubeck;Christian Coester;Yuval Rabani — Microsoft;Wei;Ethan Mook;Daniel Wichs;Joshua Brakensiek;Sai Sandeep — Stanford;University;Lorenzo Ciardo;Stanislav Živný;Amey Bhangale;Subhash Khot;Dor Minzer;David Ellis;Guy Kindler;Noam Lifshitz;Ronen Eldan;Dan Mikulincer;George Christodoulou;E. Koutsoupias;Annamária Kovács;José Correa;Andrés Cristi;Xi Chen;Matheus Venturyne;Xavier Ferreira;David C. Parkes;Yang Cai;Jinzhao Wu;Zhengyang Liu;Zeyu Ren;Zihe Wang;Ravishankar Krishnaswamy;Shi Li;Varun Suriyanarayana
  • 通讯作者:
    Varun Suriyanarayana

Prasad Raghavendra的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Prasad Raghavendra', 18)}}的其他基金

AF:Small: Bayesian Estimation and Constraint Satisfaction
AF:Small:贝叶斯估计和约束满足
  • 批准号:
    2342192
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
AF:Small:Mathematical Programming for Average-Case Problems
AF:Small:平均情况问题的数学规划
  • 批准号:
    1718695
  • 财政年份:
    2017
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
AF: Medium: Collaborative Research: On the Power of Mathematical Programming in Combinatorial Optimization
AF:媒介:协作研究:论组合优化中数学规划的力量
  • 批准号:
    1408643
  • 财政年份:
    2014
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
CAREER: Approximating NP-Hard Problems -Efficient Algorithms and their Limits
职业:近似 NP 难问题 - 高效算法及其局限性
  • 批准号:
    1149843
  • 财政年份:
    2012
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
CAREER: Approximating NP-Hard Problems -Efficient Algorithms and their Limits
职业:近似 NP 难问题 - 高效算法及其局限性
  • 批准号:
    1343104
  • 财政年份:
    2012
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant

相似国自然基金

小分子代谢物Catechin与TRPV1相互作用激活外周感觉神经元介导尿毒症瘙痒的机制研究
  • 批准号:
    82371229
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
DHEA抑制小胶质细胞Fis1乳酸化修饰减轻POCD的机制
  • 批准号:
    82301369
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
SETDB1调控小胶质细胞功能及参与阿尔茨海默病发病机制的研究
  • 批准号:
    82371419
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
PTBP1驱动H4K12la/BRD4/HIF1α复合物-PKM2正反馈环路促进非小细胞肺癌糖代谢重编程的机制研究及治疗方案探索
  • 批准号:
    82303616
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

二次計画問題の狭小な半正定値緩和に基づく多項式最適化の大域的解法の展開
基于二次规划问题的窄正半定松弛的多项式优化全局求解方法的开发
  • 批准号:
    22KJ1307
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
改良Chubanov法の対称錐計画問題への拡張
改进的丘巴诺夫方法扩展到对称锥规划问题
  • 批准号:
    22KJ0367
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Collaborative Research: AF: Small: On the Complexity of Semidefinite and Polynomial Optimization through the Lens of Real Algebraic Geometry
合作研究:AF:小:通过实代数几何的视角探讨半定和多项式优化的复杂性
  • 批准号:
    2128702
  • 财政年份:
    2021
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: On the Complexity of Semidefinite and Polynomial Optimization through the Lens of Real Algebraic Geometry
合作研究:AF:小:通过实代数几何的视角探讨半定和多项式优化的复杂性
  • 批准号:
    2128527
  • 财政年份:
    2021
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: On the Complexity of Semidefinite and Polynomial Optimization through the Lens of Real Algebraic Geometry
合作研究:AF:小:通过实代数几何的视角探讨半定和多项式优化的复杂性
  • 批准号:
    2128702
  • 财政年份:
    2021
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了