CAREER: Approximating NP-Hard Problems -Efficient Algorithms and their Limits
职业:近似 NP 难问题 - 高效算法及其局限性
基本信息
- 批准号:1343104
- 负责人:
- 金额:$ 39.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-12-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The vast majority of planning or design tasks involves an optimization problem, seeking to either minimize the cost of the proposed solution, or maximize its efficiency or payoff. Often, the goal would be the identification of the optimal solution from a set of finite many discrete options (combinatorial optimization). Unfortunately, an exact solution for the overwhelming majority of optimization problems turns out to be computationally intractable. To cope with intractability, one often settles for algorithms that provably approximate the optimal solution. The following question stems naturally from the notion of approximation: For a given combinatorial optimization problem, what is the best approximation to the optimal solution that can be efficiently computed?There are two facets to answering the above question: designing approximation algorithms and showing that no efficient algorithm can provide a better approximation guarantee (hardness result). The convergence of these two seemingly different facets has been one of the most exciting developments in theoretical computer science in recent years. This project would involve the design of improved approximation algorithms as well as showing that these algorithms are essentially optimal. Although the design of approximation algorithms is a vast area of research, the main tool underlying an overwhelming majority of existing approximation algorithms is a convex optimization technique such as linear or semidefinite programming. Existing algorithmic techniques have hit upon a common barrier on a large number of fundamental combinatorial optimization problems, a barrier that is encapsulated by the tantalizing "Unique Games Conjecture (UGC)." Therefore the study of approximability is at a very exciting juncture. On one hand, an affirmation of the UGC would resolve long standing open questions , demonstrate an underlying unity in combinatorial optimization problems, and, more importantly, show that the simplest semidefinite programs yield the best approximations. On the other hand, disproving the UGC would lead to new algorithmic techniques that will eventually lead to better approximation algorithms.The PI proposes a set of research questions involving both design of approximation algorithms and hardness of approximation results. Broadly speaking, the project has the following four research themes:1) Understand the power of semidefinite programming hierarchies via the design of new algorithms and constructions of integrality gap examples.2) Extend the emerging framework of approximability under the UGC to a larger class of combinatorial optimization problems.3) Develop technical machinery and gadgets to show unconditionally some of the hardness results based on the UGC, making progress towards its resolution.4) Apply the analytic tools developed in hardness of approximation to other branches of theoretical computer science, such as the study of exact algorithms for constraint satisfaction problems.This research necessarily draws upon tools from various theoretical disciplines such as coding theory, property testing, computational learning, derandomization and discrete harmonic analysis. The research has a strong potential for broader impact in terms of scientific workshops, developement of graduate courses, lecture notes and survey articles on the latest research in approximation, promoting undergraduate research, and advising Ph.D students.
绝大多数规划或设计任务都涉及优化问题,寻求最小化所提出解决方案的成本,或最大化其效率或回报。 通常,目标是从一组有限的多个离散选项中识别最佳解决方案(组合优化)。 不幸的是,绝大多数优化问题的精确解决方案在计算上是难以解决的。 为了应对棘手的问题,人们通常会采用可证明近似最佳解决方案的算法。以下问题自然源于近似的概念:对于给定的组合优化问题,可以有效计算的最佳解决方案的最佳近似是什么?回答上述问题有两个方面:设计近似算法并证明不存在高效的算法可以提供更好的近似保证(硬度结果)。这两个看似不同的方面的融合是近年来理论计算机科学最令人兴奋的发展之一。该项目将涉及改进的近似算法的设计以及表明这些算法本质上是最优的。尽管近似算法的设计是一个广阔的研究领域,但绝大多数现有近似算法的主要工具是凸优化技术,例如线性或半定规划。现有的算法技术在大量基本组合优化问题上遇到了一个共同的障碍,这个障碍被诱人的“独特游戏猜想(UGC)”所概括。因此,近似性的研究正处于一个非常令人兴奋的时刻。一方面,对 UGC 的肯定将解决长期存在的悬而未决的问题,展示组合优化问题的潜在统一性,更重要的是,表明最简单的半定程序产生最好的近似值。另一方面,反驳UGC将带来新的算法技术,最终将带来更好的近似算法。PI提出了一系列研究问题,涉及近似算法的设计和近似结果的硬度。从广义上讲,该项目有以下四个研究主题:1)通过新算法的设计和完整性差距示例的构造来了解半定规划层次结构的力量。2)将 UGC 下新兴的近似性框架扩展到更大的类别组合优化问题。3) 开发技术机械和小工具,无条件地显示一些基于 UGC 的硬度结果,在解决问题方面取得进展。4) 将近似硬度中开发的分析工具应用于理论计算机科学的其他分支,例如约束满足问题的精确算法的研究。这项研究必须利用来自不同理论学科的工具,例如编码理论、属性测试、计算学习、去随机化和离散调和分析。该研究在科学研讨会、研究生课程开发、关于近似最新研究的讲义和调查文章、促进本科生研究以及为博士生提供建议方面具有产生更广泛影响的强大潜力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Prasad Raghavendra其他文献
List Decodable Subspace Recovery
列表可解码子空间恢复
- DOI:
121 - 发表时间:
2020-01 - 期刊:
- 影响因子:0
- 作者:
Prasad Raghavendra; Morris Yau - 通讯作者:
Morris Yau
Robust Recovery for Stochastic Block Models, Simplified and Generalized
简化和广义随机块模型的鲁棒恢复
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Sidhanth Mohanty;Prasad Raghavendra;David X. Wu - 通讯作者:
David X. Wu
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
近似、随机化和组合优化。
- DOI:
10.1007/978-3-642-40328-6 - 发表时间:
2024-09-14 - 期刊:
- 影响因子:0
- 作者:
Prasad Raghavendra;Sofya Raskhodnikova;Klaus Jansen;José D. P. Rolim - 通讯作者:
José D. P. Rolim
Electronic Colloquium on Computational Complexity, Report No. 27 (2011) Beating the Random Ordering is Hard: Every ordering CSP is approximation resistant ¶
计算复杂性电子研讨会,第 27 号报告 (2011) 击败随机排序很难:每个排序 CSP 都具有近似抵抗性 ¶
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
V. Guruswami;Johan Håstad;R. Manokaran;Prasad Raghavendra;Moses Charikar - 通讯作者:
Moses Charikar
Theory of Computing
计算理论
- DOI:
10.4086/toc - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Alexandr Andoni;Nikhil Bansal;P. Beame;Giuseppe Italiano;Sanjeev Khanna;Ryan O’Donnell;T. Pitassi;T. Rabin;Tim Roughgarden;Clifford Stein;Rocco Servedio;Amir Abboud;Nima Anari;Ibm Srinivasan Arunachalam;T. J. Watson;Research Center;Petra Berenbrink;Aaron Bernstein;Aditya Bhaskara;Sayan Bhattacharya;Eric Blais;H. Bodlaender;Adam Bouland;Anne Broadbent;Mark Bun;Timothy Chan;Arkadev Chattopadhyay;Xue Chen;Gil Cohen;Dana Dachman;Anindya De;Shahar Dobzhinski;Zhiyi Huang;Ken;Robin Kothari;Marvin Künnemann;Tu Kaiserslautern;Rasmus Kyng;E. Zurich;Sophie Laplante;D. Lokshtanov;S. Mahabadi;Nicole Megow;Ankur Moitra;Technion Shay Moran;Google Research;Christopher Musco;Prasad Raghavendra;Alex Russell;Laura Sanità;Alex Slivkins;David Steurer;Epfl Ola Svensson;Chaitanya Swamy;Madhur Tulsiani;Christos Tzamos;Andreas Wiese;Mary Wootters;Huacheng Yu;Aaron Potechin;Aaron Sidford;Aarushi Goel;Aayush Jain;Abhiram Natarajan;Abhishek Shetty;Adam Karczmarz;Adam O’Neill;Aditi Dudeja;Aditi Laddha;Aditya Krishnan;Adrian Vladu Afrouz;J. Ameli;Ainesh Bakshi;Akihito Soeda;Akshay Krishnamurthy;Albert Cheu;A. Grilo;Alex Wein;Alexander Belov;Alexander Block;Alexander Golovnev;Alexander Poremba;Alexander Shen;Alexander Skopalik;Alexandra Henzinger;Alexandros Hollender;Ali Parviz;Alkis Kalavasis;Allen Liu;Aloni Cohen;Amartya Shankha;Biswas Amey;Bhangale Amin;Coja;Yehudayoff Amir;Zandieh Amit;Daniely Amit;Kumar Amnon;Ta;Beimel Anand;Louis Anand Natarajan;Anders Claesson;André Chailloux;André Nusser;Andrea Coladangelo;Andrea Lincoln;Andreas Björklund;Andreas Maggiori;A. Krokhin;A. Romashchenko;Andrej Risteski;Anirban Chowdhury;Anirudh Krishna;A. Mukherjee;Ankit Garg;Anna Karlin;Anthony Leverrier;Antonio Blanca;A. Antoniadis;Anupam Gupta;Anupam Prakash;A. Singh;Aravindan Vijayaraghavan;Argyrios Deligkas;Ariel Kulik;Ariel Schvartzman;Ariel Shaulker;A. Cornelissen;Arka Rai;Choudhuri Arkady;Yerukhimovich Arnab;Bhattacharyya Arthur Mehta;Artur Czumaj;A. Backurs;A. Jambulapati;Ashley Montanaro;A. Sah;A. Mantri;Aviad Rubinstein;Avishay Tal;Badih Ghazi;Bartek Blaszczyszyn;Benjamin Moseley;Benny Pinkas;Bento Natura;Bernhard Haeupler;Bill Fefferman;B. Mance;Binghui Peng;Bingkai Lin;B. Sinaimeri;Bo Waggoner;Bodo Manthey;Bohdan Kivva;Brendan Lucier Bundit;Laekhanukit Burak;Sahinoglu Cameron;Seth Chaodong Zheng;Charles Carlson;Chen;Chenghao Guo;Chenglin Fan;Chenwei Wu;Chethan Kamath;Chi Jin;J. Thaler;Jyun;Kaave Hosseini;Kaito Fujii;Kamesh Munagala;Kangning Wang;Kanstantsin Pashkovich;Karl Bringmann Karol;Wegrzycki Karteek;Sreenivasaiah Karthik;Chandrasekaran Karthik;Sankararaman Karthik;C. S. K. Green;Larsen Kasturi;Varadarajan Keita;Xagawa Kent Quanrud;Kevin Schewior;Kevin Tian;Kilian Risse;Kirankumar Shiragur;K. Pruhs;K. Efremenko;Konstantin Makarychev;Konstantin Zabarnyi;Krišj¯anis Pr¯usis;Kuan Cheng;Kuikui Liu;Kunal Marwaha;Lars Rohwedder László;Kozma László;A. Végh;L'eo Colisson;Leo de Castro;Leonid Barenboim Letong;Li;Li;L. Roditty;Lieven De;Lathauwer Lijie;Chen Lior;Eldar Lior;Rotem Luca Zanetti;Luisa Sinisclachi;Luke Postle;Luowen Qian;Lydia Zakynthinou;Mahbod Majid;Makrand Sinha;Malin Rau Manas;Jyoti Kashyop;Manolis Zampetakis;Maoyuan Song;Marc Roth;Marc Vinyals;Marcin Bieńkowski;Marcin Pilipczuk;Marco Molinaro;Marcus Michelen;Mark de Berg;M. Jerrum;Mark Sellke;Mark Zhandry;Markus Bläser;Markus Lohrey;Marshall Ball;Marthe Bonamy;Martin Fürer;Martin Hoefer;M. Kokainis;Masahiro Hachimori;Matteo Castiglioni;Matthias Englert;Matti Karppa;Max Hahn;Max Hopkins;Maximilian Probst;Gutenberg Mayank Goswami;Mehtaab Sawhney;Meike Hatzel;Meng He;Mengxiao Zhang;Meni Sadigurski;M. Parter;M. Dinitz;Michael Elkin;Michael Kapralov;Michael Kearns;James R. Lee;Sudatta Bhattacharya;Michal Koucký;Hadley Black;Deeparnab Chakrabarty;C. Seshadhri;Mahsa Derakhshan;Naveen Durvasula;Nika Haghtalab;Peter Kiss;Thatchaphol Saranurak;Soheil Behnezhad;M. Roghani;Hung Le;Shay Solomon;Václav Rozhon;Anders Martinsson;Christoph Grunau;G. Z. —. Eth;Zurich;Switzerland;Morris Yau — Massachusetts;Noah Golowich;Dhruv Rohatgi — Massachusetts;Qinghua Liu;Praneeth Netrapalli;Csaba Szepesvári;Debarati Das;Jacob Gilbert;Mohammadtaghi Hajiaghayi;Tomasz Kociumaka;B. Saha;K. Bringmann;Nick Fischer — Weizmann;Ce Jin;Yinzhan Xu — Massachusetts;Virginia Vassilevska Williams;Yinzhan Xu;Josh Alman;Kevin Rao;Hamed Hatami;—. XiangMeng;McGill University;Edith Cohen;Xin Lyu;Tamás Jelani Nelson;Uri Stemmer — Google;Research;Daniel Alabi;Pravesh K. Kothari;Pranay Tankala;Prayaag Venkat;Fred Zhang;Samuel B. Hopkins;Gautam Kamath;Shyam Narayanan — Massachusetts;Marco Gaboardi;R. Impagliazzo;Rex Lei;Satchit Sivakumar;Jessica Sorrell;T. Korhonen;Marco Bressan;Matthias Lanzinger;Huck Bennett;Mahdi Cheraghchi;V. Guruswami;João Ribeiro;Jan Dreier;Nikolas Mählmann;Sebastian Siebertz — TU Wien;The Randomized k ;Conjecture Is;False;Sébastien Bubeck;Christian Coester;Yuval Rabani — Microsoft;Wei;Ethan Mook;Daniel Wichs;Joshua Brakensiek;Sai Sandeep — Stanford;University;Lorenzo Ciardo;Stanislav Živný;Amey Bhangale;Subhash Khot;Dor Minzer;David Ellis;Guy Kindler;Noam Lifshitz;Ronen Eldan;Dan Mikulincer;George Christodoulou;E. Koutsoupias;Annamária Kovács;José Correa;Andrés Cristi;Xi Chen;Matheus Venturyne;Xavier Ferreira;David C. Parkes;Yang Cai;Jinzhao Wu;Zhengyang Liu;Zeyu Ren;Zihe Wang;Ravishankar Krishnaswamy;Shi Li;Varun Suriyanarayana - 通讯作者:
Varun Suriyanarayana
Prasad Raghavendra的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Prasad Raghavendra', 18)}}的其他基金
AF:Small: Bayesian Estimation and Constraint Satisfaction
AF:Small:贝叶斯估计和约束满足
- 批准号:
2342192 - 财政年份:2024
- 资助金额:
$ 39.45万 - 项目类别:
Standard Grant
AF:Small: Semidefinite Programming for High-dimensional Statistics
AF:Small:高维统计的半定规划
- 批准号:
2007676 - 财政年份:2020
- 资助金额:
$ 39.45万 - 项目类别:
Standard Grant
AF:Small:Mathematical Programming for Average-Case Problems
AF:Small:平均情况问题的数学规划
- 批准号:
1718695 - 财政年份:2017
- 资助金额:
$ 39.45万 - 项目类别:
Standard Grant
AF: Medium: Collaborative Research: On the Power of Mathematical Programming in Combinatorial Optimization
AF:媒介:协作研究:论组合优化中数学规划的力量
- 批准号:
1408643 - 财政年份:2014
- 资助金额:
$ 39.45万 - 项目类别:
Continuing Grant
CAREER: Approximating NP-Hard Problems -Efficient Algorithms and their Limits
职业:近似 NP 难问题 - 高效算法及其局限性
- 批准号:
1149843 - 财政年份:2012
- 资助金额:
$ 39.45万 - 项目类别:
Continuing Grant
相似国自然基金
面向NP难的进化算法理论—近似性能与随机运行时间分析
- 批准号:61906062
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
矩形布局问题的全局搜索关键技术
- 批准号:61862027
- 批准年份:2018
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
随机组合优化算法与复杂性研究
- 批准号:61772297
- 批准年份:2017
- 资助金额:63.0 万元
- 项目类别:面上项目
核心化算法中的新技术研究
- 批准号:61772115
- 批准年份:2017
- 资助金额:16.0 万元
- 项目类别:面上项目
难解问题的固定参数近似算法研究
- 批准号:61572190
- 批准年份:2015
- 资助金额:16.0 万元
- 项目类别:面上项目
相似海外基金
Extensions of stable matching problems and algorithm design
稳定匹配问题和算法设计的扩展
- 批准号:
20K11677 - 财政年份:2020
- 资助金额:
$ 39.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Various Approaches to Computationally Hard Combinatorial Optimization Problems
计算困难组合优化问题的各种方法
- 批准号:
18K11183 - 财政年份:2018
- 资助金额:
$ 39.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A Study on Performance Guarantee for Algorithmic Processing of Large Scale Data
大规模数据算法处理的性能保证研究
- 批准号:
17K00013 - 财政年份:2017
- 资助金额:
$ 39.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
効率的な最大および極大クリーク抽出アルゴリズムの開発と応用
高效最大派系提取算法的开发与应用
- 批准号:
17K00006 - 财政年份:2017
- 资助金额:
$ 39.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Design of Algorithms for Discrete Optimization Based on Graph-Theoretical Methods
基于图论方法的离散优化算法设计
- 批准号:
17K00014 - 财政年份:2017
- 资助金额:
$ 39.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)