CAREER: Computational Design of High-Performing V2O5 Cathodes for Zn-ion batteries
职业:锌离子电池高性能 V2O5 阴极的计算设计
基本信息
- 批准号:2339751
- 负责人:
- 金额:$ 50.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-07-01 至 2029-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
NONTECHNICAL SUMMARYLithium-ion batteries, with their high-energy density, high-discharge voltage, and relatively low cost, have been the battery of choice for a wide variety of applications, including portable consumer electronics, hybrid- and all-electric cars, and grid-scale energy storage. However, these batteries also come with drawbacks: potential safety issues and growing concerns regarding the availability of lithium and of the cathode materials. As an alternative, zinc-ion-based batteries with vanadium oxides as cathode material have emerged as a promising safe and cost-efficient option for grid-scale storage. With this CAREER award, the PI will employ state-of-the-art computational modeling approaches to design the most stable cathode material for zinc ions, thereby improving the performance and longevity of zinc-ion batteries. Such progress will benefit society because more intermittent green energy sources, like wind and solar, can be included in the electricity grid in a cost-efficient, reliable, and safe manner. This award also supports the PI's educational and outreach activities. The PI will train high school, undergraduate, and graduate students in research competencies, increase their computational proficiency, provide them with a better understanding of and confidence in the scientific method, and improve skills like critical thinking, problem solving, and presenting results. With this training, students will be better equipped to succeed in a wide variety of academic and non-academic careers. The educational components will directly contribute to an increase in the diversity of the STEM fields, and of physics in particular, through a combination of outreach, research opportunities for high school and undergraduate students, and an increase of underrepresented students admitted to PhD programs. TECHNICAL SUMMARYFor grid-scale storage, Zn-ion-based batteries with vanadium oxides as cathode material have emerged as a promising safe and cost-efficient alternative to Li-ion batteries, but fundamental knowledge of the properties of vanadium oxides is still lacking, which hinders progress in the field. This award supports theoretical and computational research and education with an aim to advance fundamental understanding of the physics and chemistry of the atomistic processes taking place in vanadium oxides during growth (point defects and defect complexes) and during de/intercalation (defects and interactions between defects, Zn ions, and polarons). The team will study co-intercalation, considering both dry and aqueous conditions. Degradation processes, such as detrimental phase transitions and structural degradation, will also be investigated, and deliberate doping will be explored to potentially mitigate these processes. The team will employ hybrid functional first-principles calculations, molecular dynamics (MD) simulations, machine-learned Gaussian Processes to accelerate MD simulations and the construction of phase diagrams, and a "color" charge method to accelerate MD simulations of intercalation and deintercalation. The fundamental knowledge gained is expected to lead to rational design rules to improve battery performance and shed light on experimental observations by providing insights into the physics and chemistry of the cathode at an atomic scale.This project is jointly funded by the Condensed Matter and Materials Theory program of the Division of Materials Research and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要锂离子电池具有高能量密度、高放电电压和相对较低的成本,已成为多种应用的首选电池,包括便携式消费电子产品、混合动力和全电动汽车以及电网规模的储能。然而,这些电池也有缺点:潜在的安全问题以及对锂和正极材料的可用性日益增长的担忧。作为替代方案,以钒氧化物为阴极材料的锌离子电池已成为电网规模存储的一种有前途的安全且经济高效的选择。凭借这一职业奖,PI 将采用最先进的计算建模方法来设计最稳定的锌离子阴极材料,从而提高锌离子电池的性能和寿命。这种进步将使社会受益,因为风能和太阳能等更多间歇性绿色能源可以以经济高效、可靠和安全的方式并入电网。该奖项还支持 PI 的教育和外展活动。 PI 将培训高中生、本科生和研究生的研究能力,提高他们的计算能力,让他们更好地理解科学方法并建立信心,并提高批判性思维、解决问题和展示结果等技能。通过这种培训,学生将能够更好地在各种学术和非学术职业中取得成功。教育内容将通过结合外展活动、为高中生和本科生提供研究机会以及增加攻读博士学位课程的少数学生,直接有助于增加 STEM 领域的多样性,特别是物理学领域的多样性。技术摘要对于电网规模存储,以钒氧化物为阴极材料的锌离子电池已成为锂离子电池的一种有前途的安全且经济高效的替代品,但仍缺乏对钒氧化物特性的基础知识,这使得阻碍了该领域的进步。该奖项支持理论和计算研究及教育,旨在促进对钒氧化物在生长(点缺陷和缺陷复合物)和脱/插层(缺陷和缺陷之间的相互作用)过程中发生的原子过程的物理和化学的基本理解、锌离子和极化子)。该团队将研究共插层,同时考虑干燥和含水条件。还将研究降解过程,例如有害的相变和结构降解,并将探索故意掺杂以潜在地减轻这些过程。该团队将采用混合功能第一原理计算、分子动力学(MD)模拟、机器学习高斯过程来加速 MD 模拟和相图的构建,以及“颜色”电荷方法来加速嵌入和脱层的 MD 模拟。所获得的基础知识预计将导致合理的设计规则,以提高电池性能,并通过在原子尺度上深入了解阴极的物理和化学来阐明实验观察。该项目由凝聚态和材料理论联合资助该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hartwin Peelaers其他文献
Electronic and protonic conduction in LaFeO3
- DOI:
10.1039/c7ta04330a - 发表时间:
2017-07 - 期刊:
- 影响因子:11.9
- 作者:
Zhen Zhu;Hartwin Peelaers;Chris G. Van de Walle - 通讯作者:
Chris G. Van de Walle
Hartwin Peelaers的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hartwin Peelaers', 18)}}的其他基金
REU SITE: University of Kansas Physics and Astronomy Research Experiences for Undergraduates
REU 网站:堪萨斯大学本科生物理和天文学研究经验
- 批准号:
2149897 - 财政年份:2022
- 资助金额:
$ 50.46万 - 项目类别:
Continuing Grant
相似国自然基金
超宽禁带半导体固溶体合金中p型透明导电氧化物材料设计与计算分析
- 批准号:12374074
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
基于多精度计算机试验的航空设备多函数型响应质量设计研究
- 批准号:72371128
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
基于机器学习和相图计算耦合方法的γ′相强化型高熵高温合金的加速设计及其性能研究
- 批准号:52371007
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于多尺度计算模型设计仿I型胶原蛋白的纳米纤维
- 批准号:
- 批准年份:2020
- 资助金额:64 万元
- 项目类别:面上项目
基于计算机试验的函数型响应稳健参数和容差一体化设计研究
- 批准号:71902089
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Computational Design of Single-Atom Sites in Alloy Hosts as Stable and Efficient Catalysts
职业:合金主体中单原子位点的计算设计作为稳定和高效的催化剂
- 批准号:
2340356 - 财政年份:2024
- 资助金额:
$ 50.46万 - 项目类别:
Continuing Grant
CAREER: Computational Design of Fluorescent Proteins with Multiscale Excited State QM/MM Methods
职业:利用多尺度激发态 QM/MM 方法进行荧光蛋白的计算设计
- 批准号:
2338804 - 财政年份:2024
- 资助金额:
$ 50.46万 - 项目类别:
Continuing Grant
Analysis of Somatic Mutations in Longitudinal Whole-genome Sequencing Data
纵向全基因组测序数据中的体细胞突变分析
- 批准号:
10836613 - 财政年份:2023
- 资助金额:
$ 50.46万 - 项目类别:
2023 Cerebellum Gordon Research Conference and Gordon Research Seminar
2023年小脑戈登研究大会暨戈登研究研讨会
- 批准号:
10683616 - 财政年份:2023
- 资助金额:
$ 50.46万 - 项目类别:
Individual Multimodal Pathway Statistics for Predicting Treatment Response in Late-life Depression
用于预测晚年抑郁症治疗反应的个体多模式通路统计
- 批准号:
10722921 - 财政年份:2023
- 资助金额:
$ 50.46万 - 项目类别: