CAREER: CAS-Climate: Multiscale Data and Model Synthesis Informed Approach for Assessing Climate Resilience of Crop Production Systems

职业:CAS-气候:用于评估作物生产系统气候适应能力的多尺度数据和模型综合知情方法

基本信息

  • 批准号:
    2339529
  • 负责人:
  • 金额:
    $ 50.96万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-05-01 至 2029-04-30
  • 项目状态:
    未结题

项目摘要

Today’s producers encounter a continuously expanding array of challenges with the sustainability of water resources being one of the major issues. Adapting to these issues, especially under a changing climate and increasingly extreme weather conditions, necessitates a shift in farming practices. A large amount of related data is being collected at different resolutions in time and space. These data range across properties and condition of soils, climate data, crop management data, crop health, different types of stresses and stressors, and water availability and consumption. More and more food production management decisions are now delegated to machine learning models and accompanying sensor networks that provide and generate diverse data across various scales. But these models and methods alone fall short in comprehensively addressing the wide range of scales, environmental variables, and local/regional variations necessary for climate-resilient adaptation and sustainable intensification of crop production systems. There is a need to integrate scientific and engineering expertise, assess a range of crop management scenarios, and develop resilience metrics to prolong the viability of non-renewable and finite water resources. This project will build research capacity for developing and refining modeling capabilities across scales, ranging from specific points to regions and from one day to a century. This information is crucial to steer adaptation strategies and assess their effects on both food production and water sustainability in the context of climate change. The project team will address this challenge by linking on- ground and remotely sensed data with a new modeling framework that is capable of generating multiple scenarios for crop production under different future climate scenarios to ensure the best set of strategies for sustainability and resilience of water resources. The project will use field trials, novel analytics, and links between people, farms, and natural systems to help change how field crops are grown for the better. The goal is to create an all-in-one system that can better sustain water resources and manage nutrients and soils. The project approach is based on a strategic 5-year plan for achieving the PI’s overall career goal of integrating her research and teaching through systematic investigations of food production systems with environmental concerns by studying the connections between spatial-temporal scales and physical conditions that have impeded understanding and effective application of climate smart water management practices for crop production. This effort will require a fusion of multiscale, heterogeneous, multi-sourced, time-varying data including data from sub-surface sensors, surface data, weather forecasts, crop growth, and soil nutrients, etc.; understanding of the climate-water-crop production loop; and resilience metrics. The strategy will be pursued through the following integrated objectives (1) conduct machine learning-informed multiscale modeling of crop production systems’ spatio-temporally varying responses of crop growth and hydrology; (2) investigate climate (change and extreme events) and crop management scenarios (irrigation, nutrient use, crop choice, land transition) and their impact on food production; and (3) quantify resilience metrics for the sustainability of crop production systems to guide prioritization of management measures under future climate. The education goal of this project is to engage and equip students with agroecosystem-inspired fundamental training through integration with the existing curriculum of undergraduate and graduate teaching and learning, thus strengthening their readiness to join a STEM- related workforce in data science, natural resource management, and environmental decision support and consulting. The research activities designed for the project will engage an early career faculty member and students in advancing through their careers and guiding students at different stages of education (graduate, undergraduate, and high and middle school) and engaging with rural communities through field days and educational outreach activities.This project is jointly funded by the CBET/ENG Environmental sustainability program and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vaishali Sharda其他文献

The Impact of Spatial Soil Variability on Simulation of Regional Maize Yield
土壤空间变异对区域玉米产量模拟的影响
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Vaishali Sharda;C. Handyside;B. Chaves;R. McNider;G. Hoogenboom
  • 通讯作者:
    G. Hoogenboom
Transition Pathways to Sustainable Agricultural Water Management: A Review of Integrated Modeling Approaches
可持续农业用水管理的过渡途径:综合建模方法回顾
Modeling of Groundwater Nitrate Contamination Due to Agricultural Activities—A Systematic Review
农业活动引起的地下水硝酸盐污染的建模——系统回顾
  • DOI:
    10.3390/w14244008
  • 发表时间:
    2022-12-08
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    M. Rawat;R. Sen;Ikenna Onyekwelu;Travis Wiederstein;Vaishali Sharda
  • 通讯作者:
    Vaishali Sharda
MOD$$AT: A hydro-economic modeling framework for aquifer management in irrigated agricultural regions
MOD$$AT:灌溉农业地区含水层管理的水文经济模型框架
  • DOI:
    10.1016/j.agwat.2020.106194
  • 发表时间:
    2020-08-01
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    M. R. Rad;Erin M. K. Haacker;Vaishali Sharda;Soheil Nozari;Zaichen Xiang;A. Araya;V. Uddameri;Jordan F. Suter;P. Gowda
  • 通讯作者:
    P. Gowda
An integrated crop and hydrologic modeling system to estimate hydrologic impacts of crop irrigation demands
综合作物和水文建模系统,用于估计作物灌溉需求的水文影响
  • DOI:
    10.1016/j.envsoft.2014.10.009
  • 发表时间:
    2015-10-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. McNider;C. H;yside;yside;K. Doty;W. L. Ellenburg;J. Cruise;J. Christy;D. Moss;Vaishali Sharda;G. Hoogenboom;P. Caldwell
  • 通讯作者:
    P. Caldwell

Vaishali Sharda的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vaishali Sharda', 18)}}的其他基金

RII Track-2 FEC: BioWRAP (Bioplastics With Regenerative Agricultural Properties): Spray-on bioplastics with growth synchronous decomposition and water, nutrient, and agrochemical m
RII Track-2 FEC:BioWRAP(具有再生农业特性的生物塑料):具有生长同步分解和水、营养物和农用化学品特性的喷雾生物塑料
  • 批准号:
    2119753
  • 财政年份:
    2022
  • 资助金额:
    $ 50.96万
  • 项目类别:
    Cooperative Agreement

相似国自然基金

AcrIIA16-19蛋白抑制CRISPR-Cas9系统的机制研究
  • 批准号:
    32300036
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高灵敏CRISPR-Cas策略用于循环肿瘤DNA可视化便携检测研究
  • 批准号:
    22374092
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
建立基于CRISPR/Cas12a的基因突变检测系统EasyCatch v2.0实现急性髓系白血病快速诊断和动态监测
  • 批准号:
    82300264
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
兼容等温扩增的双CRISPR/Cas12方法体系构建及其多重精准监测肉及肉制品食用安全的应用研究
  • 批准号:
    82373629
  • 批准年份:
    2023
  • 资助金额:
    47 万元
  • 项目类别:
    面上项目
硫酸盐还原菌快速分型光电化学Cas14a传感机制的研究
  • 批准号:
    42306225
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: CAS- Climate -- Air-quality-related environmental justice impacts of decarbonization scenarios
职业:CAS-气候——脱碳情景与空气质量相关的环境正义影响
  • 批准号:
    2339462
  • 财政年份:
    2024
  • 资助金额:
    $ 50.96万
  • 项目类别:
    Continuing Grant
CAS-Climate: CAREER: A Unified Zero-Carbon-Driven Design Framework for Accelerating Power Grid Deep Decarbonization (ZERO-ACCELERATOR)
CAS-气候:职业:加速电网深度脱碳的统一零碳驱动设计框架(零加速器)
  • 批准号:
    2338158
  • 财政年份:
    2024
  • 资助金额:
    $ 50.96万
  • 项目类别:
    Continuing Grant
CAREER: CAS-Climate -- A modeling framework to understand the environmental and equity impacts of building decarbonization retrofits
职业:CAS-Climate——了解建筑脱碳改造对环境和公平影响的建模框架
  • 批准号:
    2339386
  • 财政年份:
    2024
  • 资助金额:
    $ 50.96万
  • 项目类别:
    Continuing Grant
CAREER: CAS-Climate: Addressing Climate Change Impacts on Urban Water Affordability
职业:CAS-气候:应对气候变化对城市水承受能力的影响
  • 批准号:
    2337668
  • 财政年份:
    2024
  • 资助金额:
    $ 50.96万
  • 项目类别:
    Continuing Grant
CAREER: CAS-Climate: Structure-Property-Performance Relationships of Iron- and Copper-Based Hybrid Mie-Resonator Photocatalysts for C-C and C-N Coupling Reactions
职业:CAS-气候:用于 C-C 和 C-N 偶联反应的铁基和铜基混合米氏谐振器光催化剂的结构-性能-性能关系
  • 批准号:
    2237454
  • 财政年份:
    2023
  • 资助金额:
    $ 50.96万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了