CAREER: Geometric Deep Learning to Facilitate Algorithmic and Scientific Advances in Therapeutics

职业:几何深度学习促进治疗学的算法和科学进步

基本信息

  • 批准号:
    2339524
  • 负责人:
  • 金额:
    $ 56.61万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-02-15 至 2029-01-31
  • 项目状态:
    未结题

项目摘要

Imagine a vast universe of molecules and proteins, each with its unique structure and function. There are so many of them (around a trillion trillion trillion), and they all interact in complicated ways. This project will create artificial intelligence methods to better understand and analyze complex networks of data, especially those from the world of drug discovery. This project will develop geometric deep learning methods, a type of artificial intelligence that is good at understanding data that forms networks, such as how molecules interact with each other. These methods will adapt their understanding based on the specific context of each molecule, making them versatile and powerful. By aggregating billions of molecular observations using these methods, the project will create molecular search engines capable of identifying useful molecules across various criteria. These engines will be able to quickly and efficiently find the best molecules for specific purposes by considering dozens of factors all at once and discovering new possibilities that were previously impossible to explore just through experiments in a lab. This could lead to new drugs being discovered more quickly and cheaply. An integral part of the project is the education plan, which includes developing new curricula at undergraduate and graduate levels for molecular machine learning and preparing students for artificial intelligence-driven scientific roles. The outreach component focuses on increasing undergraduate research involvement, particularly among female and minority students, and educating them on the responsible use of AI in science. This project develops fundamental geometric deep learning algorithms for analyzing large, graph-structured datasets in therapeutic science, focusing on aggregating extensive molecular and protein sequence data to create adaptable molecular search engines. It aims to explore the vast molecular space, estimated at 10^60 molecules, and the plethora of protein sequences to unlock therapeutically valuable molecular interactions. The project's core is the development of innovative geometric deep learning algorithms. These algorithms will be context-aware, capable of adjusting to the molecular contexts in which they operate, and versatile enough to generalize to new tasks with limited data. They will leverage multimodal information to produce adaptable graph representations for various tasks and domains. This project will pioneer foundation graph models for general graph representations, crucial in molecular machine learning, paving the way to exploring larger molecular spaces inaccessible to experimental screening, significantly reducing costs, and establishing the foundation for geometric deep learning in therapeutic science.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
想象一个由分子和蛋白质组成的广阔宇宙,每种分子和蛋白质都有其独特的结构和功能。它们的数量如此之多(大约一万亿万亿),而且它们都以复杂的方式相互作用。该项目将创建人工智能方法,以更好地理解和分析复杂的数据网络,特别是来自药物发现领域的数据网络。该项目将开发几何深度学习方法,这是一种擅长理解形成网络的数据的人工智能,例如分子如何相互作用。这些方法将根据每个分子的具体情况调整他们的理解,使它们具有多功能性和强大的功能。通过使用这些方法聚合数十亿个分子观察结果,该项目将创建能够跨各种标准识别有用分子的分子搜索引擎。这些引擎将能够通过同时考虑数十个因素并发现以前仅通过实验室实验无法探索的新可能性,快速有效地找到用于特定目的的最佳分子。这可能会导致新药被发现得更快、更便宜。该项目的一个组成部分是教育计划,其中包括为本科生和研究生开发分子机器学习的新课程,并为学生做好人工智能驱动的科学角色的准备。外展部分的重点是增加本科生的研究参与度,特别是女性和少数族裔学生的参与度,并教育他们在科学中负责任地使用人工智能。该项目开发基本的几何深度学习算法,用于分析治疗科学中的大型图形结构数据集,重点是聚合广泛的分子和蛋白质序列数据以创建适应性强的分子搜索引擎。它旨在探索巨大的分子空间(估计有 10^60 个分子)和大量的蛋白质序列,以解锁具有治疗价值的分子相互作用。该项目的核心是创新几何深度学习算法的开发。这些算法将具有上下文感知能力,能够适应其运行的分子上下文,并且具有足够的通用性,可以推广到数据有限的新任务。他们将利用多模态信息为各种任务和领域生成适应性强的图形表示。该项目将开创通用图表示的基础图模型,这在分子机器学习中至关重要,为探索实验筛选无法访问的更大分子空间铺平道路,显着降低成本,并为治疗科学中的几何深度学习奠定基础。该奖项反映了通过使用基金会的智力价值和更广泛的影响审查标准进行评估,NSF 的法定使命被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marinka Zitnik其他文献

Marinka Zitnik的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marinka Zitnik', 18)}}的其他基金

RAPID:Collaborative Research: Computational Drug Repurposing for COVID-19
RAPID:合作研究:针对 COVID-19 的计算药物再利用
  • 批准号:
    2030459
  • 财政年份:
    2020
  • 资助金额:
    $ 56.61万
  • 项目类别:
    Standard Grant
Workshop on Drug Repurposing for Future Pandemics
未来大流行药物再利用研讨会
  • 批准号:
    2033384
  • 财政年份:
    2020
  • 资助金额:
    $ 56.61万
  • 项目类别:
    Standard Grant

相似国自然基金

基于非共面磁矩上几何相位的自旋波操控
  • 批准号:
    12374117
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
基于离散几何模型的高质量非结构曲面网格生成方法研究
  • 批准号:
    12301489
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
凸体几何中Lp仿射等周问题的研究
  • 批准号:
    12301073
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于隐式几何描述的梯度随机点阵结构多尺度建模与优化设计
  • 批准号:
    12372200
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
离散物理系统的通用几何图学习理论方法
  • 批准号:
    62376276
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目

相似海外基金

Integrating cancer genomics and spatial architecture of tumor infiltrating lymphocytes
整合癌症基因组学和肿瘤浸润淋巴细胞的空间结构
  • 批准号:
    10637960
  • 财政年份:
    2023
  • 资助金额:
    $ 56.61万
  • 项目类别:
Reliable post hoc interpretations of deep learning in genomics
基因组学深度学习的可靠事后解释
  • 批准号:
    10638753
  • 财政年份:
    2023
  • 资助金额:
    $ 56.61万
  • 项目类别:
Towards The First Global Indoor Positioning System Using Geometric Modeling and Advanced Artificial Intelligence Techniques
迈向第一个使用几何建模和先进人工智能技术的全球室内定位系统
  • 批准号:
    22K12011
  • 财政年份:
    2022
  • 资助金额:
    $ 56.61万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Geometric deep learning for likelihood-free statistical inference
用于无似然统计推断的几何深度学习
  • 批准号:
    2720990
  • 财政年份:
    2022
  • 资助金额:
    $ 56.61万
  • 项目类别:
    Studentship
Geometric Deep Learning for Generative Modelling in Computational (Bio-)Chemistry
用于计算(生物)化学生成建模的几何深度学习
  • 批准号:
    2721780
  • 财政年份:
    2022
  • 资助金额:
    $ 56.61万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了