CAREER: Monostructural Topological Spin-Insulatronics
职业:单结构拓扑自旋绝缘电子学
基本信息
- 批准号:2339315
- 负责人:
- 金额:$ 61.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-07-01 至 2029-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
NONTECHNICAL SUMMARY This CAREER award supports integrated research and education endeavors to discover and understand new physics enabling electronic devices to operate efficiently without incurring undesirable waste heat. Miniaturization of electronic devices is essential to the advancement of future technology. Down to the nanometer scale, however, further progress is hurdled by the low control efficiency, soaring heat, and complexity of integration. Recent discoveries of magnetic topological materials bring about exciting opportunities to fundamentally address these problems, thanks to their unique physical characteristics. This project conducts a timely investigation in response to the pressing need for low-dissipation devices by inquiring into the microscopic physics of the emerging classes of topological materials, intending to lay a solid physical foundation for non-dissipative devices featuring a (theoretical) 100% power conversion and vanishing heat production. In addition, the project explores a transformative alternation of the conventional spin-based electronics, such that a single material unit on its own can function as both driver and oscillator, hence obviating the need to develop complex heterostructures and interfaces. These compelling properties, bolstered by the intriguing physics behind the intertwined electronic and magnetic structures, hold potential in creating disruptive technology and could even revolutionize the basic architecture of modern computers.The research project is complemented by educational activities to train both graduate and undergraduate students for theoretical research. The PI will organize a special seminar named “Condensed Matters Matter” targeting undergraduate students of diverse backgrounds to nurture their curiosity in condensed matter physics with an accessible level of introduction and an enhanced exposure to the latest discoveries. The PI will also develop a new undergraduate course on MATHEMATICA programming for solving real problems in physical sciences and engineering. TECHNICAL SUMMARY This CAREER award funds theoretical research and educational activities to achieve non-dissipative spintronics using a single magnetic material which can drive itself without relying on foreign components. Traditional paradigms of electrical control of magnetism involve engineered heterostructures in which magnetic dynamics is controlled by spin angular momenta generated from charge currents outside of the magnetic material. Such a setup is extremely inefficient in serving its purpose because of the inhibited interfacial spin transfer and the inevitable Joule heating effect. The PI and his team pursue a new paradigm of spintronics based on monostructural systems (i.e., single material platforms) free of interfaces and devoid of Joule heating from a theoretical perspective. The project strives to unravel the microscopic origins of the intricate interplay between topological electrons and magnetic dynamics enabled by the spin-orbit interactions, among other relevant degrees of freedom, in intrinsic magnetic topological insulators and other exotic phases of matter. The project seeks to quantify the non-trivial spin-orbit torques driven by pure voltages, the dynamical consequences that follow, and the underlying symmetry principles. Besides establishing an in-depth understanding of the unprecedented physical behavior of monostructural spintronics, the project also seeks to make experimentally verifiable predictions and develop a theoretical toolbox for proper experimental designs. This award also supports educational activities which include mentoring graduate students and providing unique opportunities for undergraduate students to participate in real research at an early stage. In addition, the PI will organize a special seminar named “Condensed Matters Matter” targeting undergraduate students of diverse backgrounds to nurture their curiosity in condensed matter physics with an accessible level of introduction and an enhanced exposure to the latest discoveries. The PI will also develop a new course at senior undergraduate level to teach problem-solving skills in physical sciences and engineering using MATHEMATICA software.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要 该职业奖支持综合研究和教育努力,以发现和理解新的物理学,使电子设备能够有效运行,而不会产生不需要的废热,然而,电子设备的小型化对于未来技术的进步至关重要。由于其独特的物理特性,磁性拓扑材料的最新发现为从根本上解决这些问题带来了令人兴奋的机会。针对低耗散器件的迫切需求,通过深入研究新兴拓扑材料的微观物理,为实现(理论)100%功率转换的非耗散器件奠定坚实的物理基础此外,该项目探索了传统的基于自旋的电子器件的变革性替代,使得单个材料单元本身可以充当驱动器和振荡器。无需开发复杂的异质结构和接口。这些令人信服的特性,在相互交织的电子和磁结构背后的有趣物理学的支持下,具有创造颠覆性技术的潜力,甚至可以彻底改变现代计算机的基本架构。该研究项目得到了补充PI将组织一个名为“凝聚态物质”的特别研讨会,针对不同背景的本科生,以通俗易懂的介绍和深入浅出的方式培养他们对凝聚态物理的好奇心。 PI还将开发一门新的数学编程本科课程,用于解决物理科学和工程中的实际问题。该职业奖资助理论研究和教育活动,以利用单个磁体实现非耗散自旋电子学。磁性电控制的传统范例涉及工程异质结构,其中磁动力学由磁性外部的充电电流产生的自旋角动量控制。由于界面自旋传递受到抑制和不可避免的焦耳热效应,这种设置在实现其目的时效率极低。 PI 和他的团队追求一种基于单一结构系统(即单一材料平台)的新的自旋电子学范式。该项目致力于从理论角度揭示拓扑电子和磁动力学之间复杂相互作用的微观起源,这些相互作用是由自旋轨道相互作用以及其他相关程度实现的。该项目旨在量化纯电压驱动的非平凡自旋轨道扭矩、随之而来的动力学后果以及基本的对称原理。为了了解单结构自旋电子学前所未有的物理行为,该项目还寻求做出可实验验证的预测,并为正确的实验设计开发理论工具箱。该奖项还支持教育活动,包括指导研究生并为本科生提供独特的机会。此外,PI还将针对不同背景的本科生举办名为“凝聚态物质”的特别研讨会,以通俗易懂的介绍和增强的接触来培养他们对凝聚态物理的好奇心。 PI 还将开发一门高年级本科生新课程,教授使用 MATHEMATICA 软件解决物理科学和工程问题的技能。该奖项反映了 NSF 的法定使命,并通过使用 MATHEMATICA 软件的评估被认为值得支持。基金会的智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ran Cheng其他文献
Current-induced Néel order switching facilitated by magnetic phase transition
磁相变促进电流感应尼尔阶切换
- DOI:
10.1109/intermagshortpapers58606.2023.10228293 - 发表时间:
2023-05-01 - 期刊:
- 影响因子:0
- 作者:
Hao Wu;Hantao Zhang;Baomin Wang;Yaqin Guo;Ran Cheng;Kang L. Wang - 通讯作者:
Kang L. Wang
Noninvasive evaluation of electrical stimulation impacts on muscle hemodynamics via integrating diffuse optical spectroscopies with muscle stimulator
通过将漫反射光谱与肌肉刺激器相结合,无创评估电刺激对肌肉血流动力学的影响
- DOI:
10.1117/1.jbo.18.10.105002 - 发表时间:
2013-10-01 - 期刊:
- 影响因子:3.5
- 作者:
Yu Shang;Yu Lin;Brad A. Henry;Ran Cheng;Chong Huang;Li Chen;B. Shelton;K. Swartz;S. Salles;Guoqiang Yu - 通讯作者:
Guoqiang Yu
Noninvasive Diagnosis of Kidney Dysfunction Using a Small-Molecule Manganese-Based Magnetic Resonance Imaging Probe.
使用小分子锰基磁共振成像探针对肾功能障碍进行无创诊断。
- DOI:
10.1021/acs.analchem.3c04069 - 发表时间:
2024-02-14 - 期刊:
- 影响因子:7.4
- 作者:
Yuping Zhang;Ke Xiang;Jinbin Pan;Ran Cheng;Shaokai Sun - 通讯作者:
Shaokai Sun
Highly accurate recalibrate waveforms for extreme-mass-ratio inspirals in effective-one-body frames
高度准确地重新校准有效单体框架中极端质量比吸气的波形
- DOI:
10.3788/co.20191203.0441 - 发表时间:
2024-09-14 - 期刊:
- 影响因子:0
- 作者:
Ran Cheng;W. Han - 通讯作者:
W. Han
Germanium Multiple-Gate Field-Effect Transistor With In Situ Boron-Doped Raised Source/Drain
具有原位掺硼凸起源极/漏极的锗多栅极场效应晶体管
- DOI:
10.1109/ted.2013.2262135 - 发表时间:
2013-06-11 - 期刊:
- 影响因子:3.1
- 作者:
B. Liu;Chunlei Zhan;Yue Yang;Ran Cheng;P. Guo;Qian Zhou;E. Kong;N. Daval;C. Veytizou;D. Delprat;B. Nguyen;Y. Yeo - 通讯作者:
Y. Yeo
Ran Cheng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
单一取向CsPbBr3一维光波导阵列在异质半导体低维结构上的面内集成及其在光电互联中的应用研究
- 批准号:62374057
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
棒束流通结构中完全携带点前两相“小尺度波”和“单一扰动波”结构特性研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
超级电容器的储能机理与性能优化:从单一孔径到纳米多孔结构
- 批准号:52161135104
- 批准年份:2021
- 资助金额:150 万元
- 项目类别:
基于单一组分的金-铜纳米团簇研究协同效应对其结构和性质的作用机制
- 批准号:
- 批准年份:2021
- 资助金额:60 万元
- 项目类别:
非单一薄膜体系激光刻蚀加工精度的影响机制
- 批准号:51905471
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目