RAPID: DRL AI: A Career-Driven AI Educational Program in Smart Manufacturing for Underserved High-school Students in the Alabama Black Belt Region

RAPID:DRL AI:针对阿拉巴马州黑带地区服务不足的高中生的智能制造领域职业驱动型人工智能教育计划

基本信息

  • 批准号:
    2338987
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-12-01 至 2024-11-30
  • 项目状态:
    已结题

项目摘要

The integration of artificial intelligence (AI) into advanced manufacturing has promising potential to revolutionize productivity and generate new jobs in smart manufacturing. There is an urgent need to investigate "what to teach" and "how to teach" AI in order to prepare future workforce with the necessary AI skills, as most K-12 educators and schools lack the knowledge and experience to teach students AI skills for smart manufacturing. This project will initiate an age-appropriate career-driven AI educational program for high-school students and evaluate its effectiveness. Education researchers will develop manufacturing specific AI learning modules to teach high school students about Fused Filament Fabrication (FFF), the most accessible additive manufacturing (AM) process, that will be equipped with automatic real-time process monitoring, analysis and communication. Fifty rising high-school students from underserved school districts across the Black Belt region and rural low-income areas of Alabama, where 52.2% are African Americans and the median household annual income is $27,130, will be recruited to participate in a one-week summer camp. This AI in smart manufacturing education program will employ project-based learning to stimulate broader career interest among a diverse range of students. The proposal was received in response to the Dear Colleague Letter (DCL): "Rapidly Accelerating Research on Artificial Intelligence in K-12 Education in Formal and Informal Settings (NSF 23-097)" and funded by the Innovative Technology Experiences for Students and Teachers (ITEST) program, which supports projects that build understandings of practices, program elements, contexts and processes contributing to increasing students' knowledge and interest in science, technology, engineering, and mathematics (STEM) and information and communication technology (ICT) careers.The goal of the project is investigating age-appropriate equitable AI learning and inclusive teaching in the context of smart manufacturing. The research plan includes: (1) identify AI knowledge and skills required in smart manufacturing for high-school students; (2) experiment with project-based learning (PBL) pedagogy to prepare students to explore smart manufacturing and provide professional training in AI and smart manufacturing for teachers; (3) use a mixed method design with qualitative interview and worksheet data as well as quantitative pre-post knowledge assessment to evaluate the effectiveness of the proposed AI educational intervention. In addition to the fifty underserved students, ten high-school teachers will be recruited to receive a three-day intensive professional training before the student summer camp and will facilitate the summer camp activities. These teachers will also develop a lesson plan for continuing the AI educational intervention at their respective schools. The resulting deliverables include the AI learning modules and the smart manufacturing centered PBL pedagogy. The experimental process in developing this AI intervention can be adapted for other AI educational efforts for underserved high schools. The insights gained on the effectiveness of the proposed AI educational intervention will provide valuable lessons for advancing age-appropriate, future career-oriented, and equitable AI education across different K-12 AI educational programs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人工智能(AI)与先进制造业的融合具有彻底改变生产力并在智能制造领域创造新就业机会的巨大潜力。迫切需要研究“教什么”和“如何教”人工智能,以便为未来的劳动力提供必要的人工智能技能,因为大多数 K-12 教育工作者和学校缺乏教授学生人工智能技能的知识和经验。智能制造。该项目将为高中生启动一个适合年龄的职业驱动的人工智能教育计划,并评估其有效性。教育研究人员将开发制造特定的人工智能学习模块,向高中生教授熔丝制造 (FFF),这是最容易理解的增材制造 (AM) 工艺,该工艺将配备自动实时工艺监控、分析和通信功能。来自黑带地区和阿拉巴马州农村低收入地区服务不足学区的 50 名即将升入高中的学生将被招募参加为期一周的暑期项目,其中 52.2% 是非裔美国人,家庭年收入中位数为 27,130 美元营。该人工智能智能制造教育项目将采用基于项目的学习来激发不同学生更广泛的职业兴趣。该提案是为了回应亲爱的同事信 (DCL):“在正式和非正式环境中快速加速 K-12 教育中的人工智能研究 (NSF 23-097)”,并由学生和教师创新技术体验资助(ITEST) 计划,支持旨在加深对实践、计划要素、背景和流程的理解的项目,有助于增加学生对科学、技术、工程和数学 (STEM) 以及信息和通信的知识和兴趣该项目的目标是研究智能制造背景下适合年龄的公平人工智能学习和包容性教学。研究计划包括:(1)确定高中生智能制造所需的人工智能知识和技能; (2)尝试基于项目的学习(PBL)教学法,为学生探索智能制造做好准备,并为教师提供人工智能和智能制造方面的专业培训; (3)采用混合方法设计,结合定性访谈和工作表数据以及定量的岗前知识评估来评估所提出的人工智能教育干预的有效性。除了50名服务不足的学生外,还将招募10名高中教师在学生夏令营前接受为期三天的强化专业培训,为夏令营活动提供便利。这些教师还将制定课程计划,以便在各自的学校继续进行人工智能教育干预。由此产生的成果包括人工智能学习模块和以智能制造为中心的 PBL 教学法。开发这种人工智能干预的实验过程可以适用于服务不足的高中的其他人工智能教育工作。从拟议的人工智能教育干预措施的有效性中获得的见解将为在不同的 K-12 人工智能教育项目中推进适合年龄、以未来职业为导向且公平的人工智能教育提供宝贵的经验教训。该奖项反映了 NSF 的法定使命,并被视为值得通过使用基金会的智力优点和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jia Liu其他文献

Supra-ilioinguinal versus modified Stoppa approach in the treatment of acetabular fractures: reduction quality and early clinical results of a retrospective study
髂腹股沟上入路与改良 Stoppa 入路治疗髋臼骨折:回顾性研究的复位质量和早期临床结果
  • DOI:
    10.1186/s13018-019-1428-y
  • 发表时间:
    2019-11-14
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Sheng Yao;Kaifang Chen;Yanhui Ji;Fengzhao Zhu;Lian Zeng;Zekang Xiong;Ting;Fan Yang;Jia Liu;Xiao
  • 通讯作者:
    Xiao
Self-Assembled Sulfated Hyaluronan Coating Modulates Transforming Growth Factor-Beta1 Penetration for Corneal Scarring Alleviation.
自组装硫酸化透明质酸涂层可调节转化生长因子-β1 的渗透,从而减轻角膜疤痕。
  • DOI:
    10.1021/acsami.3c02910
  • 发表时间:
    2023-06-21
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Yongrui Huang;Jia Liu;Xiaomin Sun;Yuehai Peng;Yingni Xu;Sa Liu;Wenjing Song;Li Ren
  • 通讯作者:
    Li Ren
A UPLC-MS/MS method for comparative pharmacokinetics study of morusin and morin in normal and diabetic rats.
一种 UPLC-MS/MS 方法,用于比较桑色素和桑色素在正常和糖尿病大鼠中的药代动力学研究。
  • DOI:
    10.1002/bmc.4516
  • 发表时间:
    2019-07-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jia Liu;Y. Mu;S. Xiong;Peilu Sun;Zhipeng Deng
  • 通讯作者:
    Zhipeng Deng
A Novel Crowdsourcing Inference Method
一种新颖的众包推理方法
  • DOI:
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jia Liu;William C. Tang;Yuanfang Chen;Mingchu Li;M. Guizani
  • 通讯作者:
    M. Guizani
Progression of the role of CRYAB in signaling pathways and cancers
CRYAB 在信号通路和癌症中的作用进展
  • DOI:
    10.2147/ott.s201799
  • 发表时间:
    2019-05-30
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Junfei Zhang;Jia Liu;Jiali Wu;Wenfeng Li;Zhongwei Chen;Lishan Yang
  • 通讯作者:
    Lishan Yang

Jia Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jia Liu', 18)}}的其他基金

CAREER: Manufacturing USA: Deep Learning to Understand Fatigue Performance and Processing Relationship of Complex Parts by Additive Manufacturing for High-consequence Applications
职业:美国制造:通过深度学习了解复杂零件的疲劳性能和加工关系,通过增材制造实现高后果应用
  • 批准号:
    2239307
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
ERASE-PFAS: Exploring efficient pilot-scale treatment of per- and polyfluoroalkyl substances and comingled chlorinated solvents in groundwater using magnetic nanomaterials
ERASE-PFAS:探索使用磁性纳米材料对地下水中的全氟烷基物质和多氟烷基物质以及混合氯化溶剂进行有效的中试规模处理
  • 批准号:
    2305729
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
ERASE-PFAS: Exploring efficient pilot-scale treatment of per- and polyfluoroalkyl substances and comingled chlorinated solvents in groundwater using magnetic nanomaterials
ERASE-PFAS:探索使用磁性纳米材料对地下水中的全氟烷基物质和多氟烷基物质以及混合氯化溶剂进行有效的中试规模处理
  • 批准号:
    2305729
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
FMSG: Cyber: Federated Deep Learning for Future Ubiquitous Distributed Additive Manufacturing
FMSG:网络:面向未来无处不在的分布式增材制造的联合深度学习
  • 批准号:
    2134689
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
SpecEES: Toward Spectral and Energy Efficient Cross-Layer Designs for Millimeter-Wave-Based Massive MIMO Networks
SpecEES:面向基于毫米波的大规模 MIMO 网络的频谱和节能跨层设计
  • 批准号:
    2140277
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Preparing to Care for a Culturally and Linguistically Diverse UK Patient Population: How Healthcare Students Develop Their Cultural Competence
准备照顾文化和语言多样化的英国患者群体:医疗保健学生如何发展他们的文化能力
  • 批准号:
    ES/W004860/1
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Fellowship
NeTS: Small: Toward Optimal, Efficient, and Holistic Networking Design for Massive-MIMO Wireless Networks
NeTS:小型:面向大规模 MIMO 无线网络的优化、高效和整体网络设计
  • 批准号:
    2102233
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
CPS: Medium: An AI-enabled Cyber-Physical-Biological System for Cardiac Organoid Maturation
CPS:中:用于心脏类器官成熟的人工智能网络物理生物系统
  • 批准号:
    2038603
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
CIF: Small: Taming Convergence and Delay in Stochastic Network Optimization with Hessian Information
CIF:小:利用 Hessian 信息驯服随机网络优化中的收敛和延迟
  • 批准号:
    2110252
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
CAREER: Computing-Aware Network Optimization for Efficient Distributed Data Analytics at the Wireless Edge
职业:计算感知网络优化,用于无线边缘的高效分布式数据分析
  • 批准号:
    2110259
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant

相似国自然基金

水稻矮化卷叶基因DRL的图位克隆与作用机理研究
  • 批准号:
    31501377
  • 批准年份:
    2015
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

RAPID: DRL AI: Understanding Perceptions and Use of AI in K-12 Education Using a Nationally Representative Sample
RAPID:DRL AI:使用全国代表性样本了解 K-12 教育中 AI 的认知和使用
  • 批准号:
    2334172
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
RAPID: DRL AI: Non-digital Hands-on AI Learning Resources for Middle-School Students
RAPID:DRL AI:面向中学生的非数字实践人工智能学习资源
  • 批准号:
    2343693
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
RAPID DRL AI: Empowering Teachers to Collaborate with Generative AI for Developing High-Quality STEM Learning Resources
RAPID DRL AI:让教师能够与生成式 AI 协作开发高质量的 STEM 学习资源
  • 批准号:
    2335975
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
RAPID: DRL AI: Scaffolding Automated Feedback for Teachers
RAPID:DRL AI:为教师提供自动反馈的脚手架
  • 批准号:
    2337772
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
RAPID: DRL AI: The Development of a Digital Platform for Evaluating and Using AI-Generated Content for Academic Purposes
RAPID:DRL AI:开发用于评估和使用人工智能生成内容用于学术目的的数字平台
  • 批准号:
    2337969
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了