FMSG: Cyber: Federated Deep Learning for Future Ubiquitous Distributed Additive Manufacturing

FMSG:网络:面向未来无处不在的分布式增材制造的联合深度学习

基本信息

  • 批准号:
    2134689
  • 负责人:
  • 金额:
    $ 49.88万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Distributed additive manufacturing has promising potential to connect and coordinate individual manufacturers for efficient, on-demand production. It can leverage the freeform fabrication of numerous additive manufacturers to form a flexible and robust supply chain and achieve reconfigurable mass customization in the future. However, product quality, consistency and privacy concerns among those distributed manufacturers pose a grand challenge to fully unleashing the potential of distributed additive manufacturing. This Future Manufacturing Seed Grant (FMSG) CyberManufacturing project will support fundamental research to provide needed knowledge for developing a unified algorithmic and training framework. The new framework, named FEDMDL, will lay a solid foundation to enable consistent and reliable production in a privacy-preserving, insight-sharing manufacturing network. This will further promote the adoption of additively manufactured parts in various industries, such as aerospace, automobile, healthcare, and will boost the participation of small-and-medium-sized manufacturers in the national supply chain. Therefore, results from this research will benefit the competitive advantages of US manufacturing and economy. This research provides manufacturing companies with the synergy of novel machine learning and federated computing techniques. The multi-disciplinary approach will help broaden the participation of underrepresented groups in research and positively impact engineering education. The unified algorithmic and training framework, FEDMDL, will chart a new theoretical path to enabling reliable production, consistent quality, and privacy-preserving data sharing in distributed additive manufacturing. FEDMDL will synthesize the fundamental physics of additive manufacturing processes into deep learning algorithms and train the new models on a federated learning cyberinfrastructure. In this seed grant, FEDMDL will be prototyped with fatigue performance assessment of additively manufactured metals in a distributed manufacturing network. The research team will: (1) conduct fatigue testing and defect characterization to understand material-defect-geometry-loading-fatigue relationships; (2) develop fracture-mechanics-centric deep learning models to approximate multi-physics multiscale processes and predict the fatigue performance of complex geometries under multiaxial loading; (3) design a cross-silo, additive-manufacturing-aware federated learning cyberinfrastructure to train the deep learning models with collective insights from the sparse, siloed datasets across manufacturers; and (4) evaluate the framework by deploying it in a real-world distributed additive manufacturing network. This work will result in an experimentally validated, generalizable algorithmic and training framework to catalyze research and applications in quality modeling, qualification, and control for future distributed additive manufacturing with collective intelligence.This project is jointly funded by the Division of Civil. Mechanical and Manufacturing Innovation, the Established Program to Stimulate Competitive Research (EPSCoR), and the Division of Electrical, Communications, and Cyber Systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
分布式增材制造在连接和协调各个制造商以实现高效、按需生产方面具有广阔的潜力。它可以利用众多增材制造商的自由制造来形成灵活而强大的供应链,并在未来实现可重新配置的大规模定制。然而,这些分布式制造商之间的产品质量、一致性和隐私问题对充分释放分布式增材制造的潜力提出了巨大的挑战。该未来制造种子资助 (FMSG) 网络制造项目将支持基础研究,为开发统一的算法和培训框架提供所需的知识。名为 FEDMDL 的新框架将为在保护隐私、洞察共享的制造网络中实现一致、可靠的生产奠定坚实的基础。这将进一步促进增材制造零部件在航空航天、汽车、医疗保健等各行业的采用,并将促进中小型制造商参与国家供应链。因此,这项研究的结果将有利于美国制造业和经济的竞争优势。这项研究为制造公司提供了新颖的机器学习和联合计算技术的协同作用。多学科方法将有助于扩大代表性不足群体对研究的参与,并对工程教育产生积极影响。 统一的算法和训练框架 FEDMDL 将绘制一条新的理论路径,以在分布式增材制造中实现可靠的生产、一致的质量和保护隐私的数据共享。 FEDMDL 将增材制造工艺的基础物理原理综合到深度学习算法中,并在联邦学习网络基础设施上训练新模型。在这笔种子资金中,FEDMDL 将通过分布式制造网络中增材制造金属的疲劳性能评估进行原型设计。研究团队将:(1)进行疲劳测试和缺陷表征,以了解材料-缺陷-几何形状-载荷-疲劳关系; (2)开发以断裂力学为中心的深度学习模型来近似多物理多尺度过程并预测多轴载荷下复杂几何形状的疲劳性能; (3) 设计一个跨孤岛、增材制造感知的联邦学习网络基础设施,利用来自制造商稀疏、孤立的数据集的集体见解来训练深度学习模型; (4) 通过将框架部署在现实世界的分布式增材制造网络中来评估该框架。这项工作将产生一个经过实验验证的、可推广的算法和培训框架,以促进未来分布式增材制造与集体智能的质量建模、鉴定和控制方面的研究和应用。该项目由土木部门共同资助。机械和制造创新、刺激竞争研究既定计划 (EPSCoR) 以及电气、通信和网络系统部门。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和更广泛的评估进行评估,认为值得支持影响审查标准。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A review of machine learning techniques for process and performance optimization in laser beam powder bed fusion additive manufacturing
激光束粉末床熔融增材制造工艺和性能优化的机器学习技术综述
  • DOI:
    10.1007/s10845-022-02012-0
  • 发表时间:
    2022-09-15
  • 期刊:
  • 影响因子:
    8.3
  • 作者:
    Jia Liu;Jia Ye;Daniel Silva Izquierdo;Aleks;r Vinel;r;N. Shamsaei;Shuai Shao
  • 通讯作者:
    Shuai Shao
Defect criticality analysis on fatigue life of L-PBF 17-4 PH stainless steel via machine learning
通过机器学习对 L-PBF 17-4 PH 不锈钢疲劳寿命进行缺陷临界分析
  • DOI:
    10.1016/j.ijfatigue.2022.107018
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Li, Anyi;Baig, Shaharyar;Liu, Jia;Shao, Shuai;Shamsaei, Nima
  • 通讯作者:
    Shamsaei, Nima
FedAT: A High-Performance and Communication-Efficient Federated Learning System with Asynchronous Tiers
FedAT:具有异步层的高性能、通信高效的联邦学习系统
  • DOI:
    10.1145/3458817.3476211
  • 发表时间:
    2021-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chai, Zheng;Chen, Yujing;Anwar, Ali;Zhao, Liang;Cheng, Yue;Rangwala, Huzefa
  • 通讯作者:
    Rangwala, Huzefa
SFS: smart OS Scheduling for Serverless Functions
SFS:无服务器功能的智能操作系统调度
Defects Classification via Hierarchical Graph Convolutional Network in L-PBF Additive Manufacturing
L-PBF 增材制造中通过分层图卷积网络进行缺陷分类
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jia Liu其他文献

Supra-ilioinguinal versus modified Stoppa approach in the treatment of acetabular fractures: reduction quality and early clinical results of a retrospective study
髂腹股沟上入路与改良 Stoppa 入路治疗髋臼骨折:回顾性研究的复位质量和早期临床结果
  • DOI:
    10.1186/s13018-019-1428-y
  • 发表时间:
    2019-11-14
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Sheng Yao;Kaifang Chen;Yanhui Ji;Fengzhao Zhu;Lian Zeng;Zekang Xiong;Ting;Fan Yang;Jia Liu;Xiao
  • 通讯作者:
    Xiao
Self-Assembled Sulfated Hyaluronan Coating Modulates Transforming Growth Factor-Beta1 Penetration for Corneal Scarring Alleviation.
自组装硫酸化透明质酸涂层可调节转化生长因子-β1 的渗透,从而减轻角膜疤痕。
  • DOI:
    10.1021/acsami.3c02910
  • 发表时间:
    2023-06-21
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Yongrui Huang;Jia Liu;Xiaomin Sun;Yuehai Peng;Yingni Xu;Sa Liu;Wenjing Song;Li Ren
  • 通讯作者:
    Li Ren
A UPLC-MS/MS method for comparative pharmacokinetics study of morusin and morin in normal and diabetic rats.
一种 UPLC-MS/MS 方法,用于比较桑色素和桑色素在正常和糖尿病大鼠中的药代动力学研究。
  • DOI:
    10.1002/bmc.4516
  • 发表时间:
    2019-07-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jia Liu;Y. Mu;S. Xiong;Peilu Sun;Zhipeng Deng
  • 通讯作者:
    Zhipeng Deng
A Novel Crowdsourcing Inference Method
一种新颖的众包推理方法
  • DOI:
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jia Liu;William C. Tang;Yuanfang Chen;Mingchu Li;M. Guizani
  • 通讯作者:
    M. Guizani
Progression of the role of CRYAB in signaling pathways and cancers
CRYAB 在信号通路和癌症中的作用进展
  • DOI:
    10.2147/ott.s201799
  • 发表时间:
    2019-05-30
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Junfei Zhang;Jia Liu;Jiali Wu;Wenfeng Li;Zhongwei Chen;Lishan Yang
  • 通讯作者:
    Lishan Yang

Jia Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jia Liu', 18)}}的其他基金

CAREER: Manufacturing USA: Deep Learning to Understand Fatigue Performance and Processing Relationship of Complex Parts by Additive Manufacturing for High-consequence Applications
职业:美国制造:通过深度学习了解复杂零件的疲劳性能和加工关系,通过增材制造实现高后果应用
  • 批准号:
    2239307
  • 财政年份:
    2023
  • 资助金额:
    $ 49.88万
  • 项目类别:
    Standard Grant
ERASE-PFAS: Exploring efficient pilot-scale treatment of per- and polyfluoroalkyl substances and comingled chlorinated solvents in groundwater using magnetic nanomaterials
ERASE-PFAS:探索使用磁性纳米材料对地下水中的全氟烷基物质和多氟烷基物质以及混合氯化溶剂进行有效的中试规模处理
  • 批准号:
    2305729
  • 财政年份:
    2023
  • 资助金额:
    $ 49.88万
  • 项目类别:
    Standard Grant
RAPID: DRL AI: A Career-Driven AI Educational Program in Smart Manufacturing for Underserved High-school Students in the Alabama Black Belt Region
RAPID:DRL AI:针对阿拉巴马州黑带地区服务不足的高中生的智能制造领域职业驱动型人工智能教育计划
  • 批准号:
    2338987
  • 财政年份:
    2023
  • 资助金额:
    $ 49.88万
  • 项目类别:
    Standard Grant
ERASE-PFAS: Exploring efficient pilot-scale treatment of per- and polyfluoroalkyl substances and comingled chlorinated solvents in groundwater using magnetic nanomaterials
ERASE-PFAS:探索使用磁性纳米材料对地下水中的全氟烷基物质和多氟烷基物质以及混合氯化溶剂进行有效的中试规模处理
  • 批准号:
    2305729
  • 财政年份:
    2023
  • 资助金额:
    $ 49.88万
  • 项目类别:
    Standard Grant
SpecEES: Toward Spectral and Energy Efficient Cross-Layer Designs for Millimeter-Wave-Based Massive MIMO Networks
SpecEES:面向基于毫米波的大规模 MIMO 网络的频谱和节能跨层设计
  • 批准号:
    2140277
  • 财政年份:
    2021
  • 资助金额:
    $ 49.88万
  • 项目类别:
    Standard Grant
Preparing to Care for a Culturally and Linguistically Diverse UK Patient Population: How Healthcare Students Develop Their Cultural Competence
准备照顾文化和语言多样化的英国患者群体:医疗保健学生如何发展他们的文化能力
  • 批准号:
    ES/W004860/1
  • 财政年份:
    2021
  • 资助金额:
    $ 49.88万
  • 项目类别:
    Fellowship
NeTS: Small: Toward Optimal, Efficient, and Holistic Networking Design for Massive-MIMO Wireless Networks
NeTS:小型:面向大规模 MIMO 无线网络的优化、高效和整体网络设计
  • 批准号:
    2102233
  • 财政年份:
    2020
  • 资助金额:
    $ 49.88万
  • 项目类别:
    Standard Grant
CPS: Medium: An AI-enabled Cyber-Physical-Biological System for Cardiac Organoid Maturation
CPS:中:用于心脏类器官成熟的人工智能网络物理生物系统
  • 批准号:
    2038603
  • 财政年份:
    2020
  • 资助金额:
    $ 49.88万
  • 项目类别:
    Standard Grant
CIF: Small: Taming Convergence and Delay in Stochastic Network Optimization with Hessian Information
CIF:小:利用 Hessian 信息驯服随机网络优化中的收敛和延迟
  • 批准号:
    2110252
  • 财政年份:
    2020
  • 资助金额:
    $ 49.88万
  • 项目类别:
    Standard Grant
CAREER: Computing-Aware Network Optimization for Efficient Distributed Data Analytics at the Wireless Edge
职业:计算感知网络优化,用于无线边缘的高效分布式数据分析
  • 批准号:
    2110259
  • 财政年份:
    2020
  • 资助金额:
    $ 49.88万
  • 项目类别:
    Continuing Grant

相似国自然基金

面向移动网络开放环境的联邦强化学习
  • 批准号:
    62372296
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向联邦学习的智能边缘网络服务关键技术研究
  • 批准号:
    62372185
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
模型驱动的异构联邦边缘智能网络碳排放建模与优化
  • 批准号:
    62301516
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
跨边缘网络情境自适应联邦持续学习方法研究
  • 批准号:
    62302017
  • 批准年份:
    2023
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目
面向边缘智能网络的模拟空中联邦学习关键理论与优化技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CPS: Medium: Connected Federated Farms: Privacy-Preserving Cyber Infrastructure for Collaborative Smart Farming
CPS:中:互联联合农场:用于协作智能农业的隐私保护网络基础设施
  • 批准号:
    2212878
  • 财政年份:
    2023
  • 资助金额:
    $ 49.88万
  • 项目类别:
    Standard Grant
Securing Federated Communications in Cyber-Physical Energy Systems
确保网络物理能源系统中的联合通信安全
  • 批准号:
    569341-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 49.88万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Securing Federated Communications in Cyber-Physical Energy Systems
确保网络物理能源系统中的联合通信安全
  • 批准号:
    569341-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 49.88万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
CCRI: Planning-C: Federated Cloud Platform for Networked Cyber Physical Systems Research
CCRI:Planning-C:网络信息物理系统研究联合云平台
  • 批准号:
    2213634
  • 财政年份:
    2022
  • 资助金额:
    $ 49.88万
  • 项目类别:
    Standard Grant
Data Science Core
数据科学核心
  • 批准号:
    10302201
  • 财政年份:
    2021
  • 资助金额:
    $ 49.88万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了