RAPID DRL AI: Empowering Teachers to Collaborate with Generative AI for Developing High-Quality STEM Learning Resources

RAPID DRL AI:让教师能够与生成式 AI 协作开发高质量的 STEM 学习资源

基本信息

  • 批准号:
    2335975
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-12-01 至 2024-11-30
  • 项目状态:
    已结题

项目摘要

The rapid advances in large language models (LLMs) have presented tremendous opportunities to create interactive, personalized learning resources on a large scale. To fully harness the educational potential of these technologies, it is crucial that teachers - who are at the forefront of daily student interaction and possess indispensable knowledge and expertise - serve as key contributors in the process. This time-sensitive project addresses the urgent need for viable mechanisms to empower teachers to harness the capabilities of LLMs through a teacher-AI collaboration paradigm in the context of learning through video. The research team will partner with WGBH Educational Foundation (GBH), Boston’s PBS station, to support teachers in creating and customizing an intelligent tutor that accompanies the STEM learning resources available on PBS LearningMedia, a platform already popular among teachers nationwide, with a comprehensive library of over 5,000 high quality STEM-focused videos and millions of users. This proposal was received in response to the Dear Colleague Letter (DCL): Rapidly Accelerating Research on Artificial Intelligence in K-12 Education in Formal and Informal Settings (NSF 23-097) and funded by the Innovative Technology Experiences for Students and Teachers (ITEST) program, which supports projects that build understandings of practices, program elements, contexts and processes contributing to increasing students' knowledge and interest in science, technology, engineering, and mathematics (STEM) and information and communication technology (ICT) careers.Intelligent tutors will be incorporated into videos and pose comprehension questions to students and provide personalized feedback during video viewing. The team will iteratively design and develop a teacher-AI collaborative platform that allows teachers to oversee the intelligent tutors’ generation of question sequences and feedback. The platform will provide "LLM building blocks" for teachers to steer LLMs to generate desirable outputs. Thus, teachers maintain control over the tutors' instructional dialogue with students, ensuring such dialogue aligns with teachers’ instructional objectives and the unique needs of their students. The team will then generate evidence demonstrating the feasibility and potential effectiveness of the proposed mechanism and specific design strategies that enable non-technical domain experts to have significant involvement in the development of AI-based educational resources. This project has the potential for a substantial broader impact, as it builds upon the existing PBS LearningMedia platform. This ensures the sustainability of the proposed platform and reach a large number of educators. By making the platform publicly available, this research will enable educators to continue generating interactive videos that cater to their specific educational needs. This work holds the promise of democratizing access to AI for teachers and promoting their active involvement in the production of AI-based learning resources.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
大语言模型(LLM)的快速发展为大规模创建交互式、个性化学习资源提供了巨大的机会,为了充分利用这些技术的教育潜力,处于日常学生最前沿的教师至关重要。互动并拥有不可或缺的知识和专业知识 - 作为这一过程中的关键贡献者,这个时间敏感的项目解决了对可行机制的迫切需要,使教师能够在学习的背景下通过教师与人工智能协作范例来利用法学硕士的能力。研究团队将与视频合作。 WGBH 教育基金会 (GBH) 是波士顿的 PBS 电台,支持教师创建和定制智能导师,并附带 PBS LearningMedia 上提供的 STEM 学习资源,PBS LearningMedia 是一个已经受到全国教师欢迎的平台,拥有超过 5,000 个高质量 STEM 的综合图书馆- 重点视频和数百万用户收到此提案是为了回应《亲爱的同事信》(DCL):快速加速正规和中小学 K-12 教育中的人工智能研究。非正式环境 (NSF 23-097) 并由学生和教师创新技术体验 (ITEST) 计划资助,该计划支持建立对实践、计划要素、背景和流程的理解的项目,有助于增加学生对科学的知识和兴趣,智能导师将融入视频中,向学生提出理解问题,并在视频观看过程中提供个性化反馈。开发一个教师-人工智能协作平台,允许教师监督智能导师生成问题序列和反馈。该平台将为教师提供“法学硕士构建块”,以指导法学硕士产生理想的输出,从而保持对导师的控制。与学生进行教学对话,这种对话符合教师的教学目标和学生的独特需求,然后团队将生成证据,证明所提出的机制和具体设计策略的可行性和潜在有效性,使非技术领域专家能够大力参与开发该项目建立在现有的 PBS LearningMedia 平台之上,因此具有产生更广泛影响的潜力,并通过公开该平台来覆盖大量教育工作者。这项研究将使教育工作者能够继续制作满足其特定教育需求的互动视频。这项工作有望使教师获得人工智能的民主化,并促进他们积极参与基于人工智能的学习资源的制作。该奖项反映了 NSF 的贡献。法定使命并被认为值得支持使用基金会的智力价值和更广泛的影响审查标准进行评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xu Wang其他文献

Diversity of seed and seed oil physicochemical traits of Xanthoceras sorbifolium Bunge
文冠果种子及种子油理化性状的多样性
  • DOI:
    10.1016/j.jfca.2020.103705
  • 发表时间:
    2020-11-04
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Zishuo Zhang;Yi Zhang;Y. Ao;M. R. Saunders;Xu Wang
  • 通讯作者:
    Xu Wang
Determination of lipid–water partition coefficient of neutral and ionic drugs by liposome electrokinetic chromatography
脂质体电动色谱法测定中性和离子药物的脂水分配系数
  • DOI:
    10.1002/elps.202000382
  • 发表时间:
    2021-04-28
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Hui Jiang;Hao Zhang;Shi;Min Lu;Xu Wang;Fengqing Yang
  • 通讯作者:
    Fengqing Yang
A non-circular Eshelby inclusion near a non-parabolic inhomogeneity admitting internal uniform stresses
接近非抛物线不均匀性的非圆形 Eshelby 夹杂物,允许内部均匀应力
An improved authenticated key exchange protocol based on chaotic maps for wireless sensor networks
一种改进的基于混沌映射的无线传感器网络认证密钥交换协议
A rapid life-prediction approach for solder joints based on modified Engelmaier fatigue model
基于修正恩格尔迈尔疲劳模型的焊点寿命快速预测方法
  • DOI:
    10.1016/j.microrel.2020.113844
  • 发表时间:
    2020-11-01
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Yuxiong Pan;Zhou Guifa;Xu Wang;Kuang Fen
  • 通讯作者:
    Kuang Fen

Xu Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xu Wang', 18)}}的其他基金

RII Track-4: Transcriptome Profile and X Chromosome Dosage Compensation in the Zonary Placenta
RII Track-4:带状胎盘中的转录组谱和 X 染色体剂量补偿
  • 批准号:
    1928770
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
STTR Phase I: High-Speed Indoor Wireless Networking Using Visible Light Communications
STTR 第一阶段:使用可见光通信的高速室内无线网络
  • 批准号:
    1521387
  • 财政年份:
    2015
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant

相似国自然基金

水稻矮化卷叶基因DRL的图位克隆与作用机理研究
  • 批准号:
    31501377
  • 批准年份:
    2015
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

RAPID: DRL AI: Understanding Perceptions and Use of AI in K-12 Education Using a Nationally Representative Sample
RAPID:DRL AI:使用全国代表性样本了解 K-12 教育中 AI 的认知和使用
  • 批准号:
    2334172
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
RAPID: DRL AI: Non-digital Hands-on AI Learning Resources for Middle-School Students
RAPID:DRL AI:面向中学生的非数字实践人工智能学习资源
  • 批准号:
    2343693
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
RAPID: DRL AI: Scaffolding Automated Feedback for Teachers
RAPID:DRL AI:为教师提供自动反馈的脚手架
  • 批准号:
    2337772
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
RAPID: DRL AI: The Development of a Digital Platform for Evaluating and Using AI-Generated Content for Academic Purposes
RAPID:DRL AI:开发用于评估和使用人工智能生成内容用于学术目的的数字平台
  • 批准号:
    2337969
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
RAPID: DRL AI: Data Driven Approaches to Integrating AI in K-12 Education Using Social Media Analysis
RAPID:DRL AI:利用社交媒体分析将 AI 集成到 K-12 教育中的数据驱动方法
  • 批准号:
    2332306
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了