CAREER: Manufacturing USA: Deep Learning to Understand Fatigue Performance and Processing Relationship of Complex Parts by Additive Manufacturing for High-consequence Applications
职业:美国制造:通过深度学习了解复杂零件的疲劳性能和加工关系,通过增材制造实现高后果应用
基本信息
- 批准号:2239307
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2028-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Metal additive manufacturing (AM) such as laser powder-bed fusion (LPBF) has been increasingly explored not only for product innovation, but also shop-floor production, demonstrated by growing success from a variety of industries. However, the lack of knowledge in both fatigue failure and the performance uncertainty of LPBF parts poses a significant challenge and undermines the potential of deploying LPBF for high-consequence applications. This Faculty Early Career Development (CAREER) award supports fundamental research to understand the effects of LPBF processing on defects and subsequent fatigue behavior, advance the knowledge of fatigue scattering of LPBF parts that are complex in geometry and subject to multiaxial loading. The effort will establish a physics-centric, machine learning framework for fatigue life predictions, serving as a technological foundation for future metal AM production of dynamic load-bearing applications, and thus, enhance the competitiveness of U.S. industry. This CAREER project will also integrate education and outreach programs designed to broaden the participation from underrepresented groups through actively engaging K-12 students for STEM education and recruiting women and minorities into research, priming future generations of diverse engineers with the knowledge and skills indispensable in the age of manufacturing innovation and big data.The ultimate goal of this early career effort is to understand fatigue failures of complex LPBF parts under multiaxial loading for data-driven fatigue life predictions. The research will investigate the nature of fatigue failures from plastic deformation and crack initiation at the highest stress concentrations and translate fatigue life predictions into evaluating the crack growth at the vulnerable zones using a multiscale approach. On the micro-scale, critical defects with crack-initiating features (by x-ray computed tomography or optical profilometry) will be identified based on the correlation with fatigue failures; both the effects of critical defects and their spatial interactions on crack growth will be examined using fracture mechanics and data-intense statistics. On the part scale, the weak regions of the highest stress concentrations will be examined by finite element modeling of stress and strain behaviors through decoupling multiaxial loading. The effects of critical defects and the principal stresses at vulnerable localities will then be incorporated into a hierarchical graph convolutional network of deep learning to model their synergistic impacts on crack growth and calculate the fatigue life of LPBF parts with advanced data analytics. The findings are expected to generate new knowledge of defect formation relevant to fatigue performance of LPBF parts, uncover the synergistic impacts of multiscale factors on fatigue fractures, and further LPBF adoption for high-consequence applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
激光粉末床熔合 (LPBF) 等金属增材制造 (AM) 已得到越来越多的探索,不仅用于产品创新,还用于车间生产,各行业的不断成功证明了这一点。然而,缺乏对 LPBF 零件的疲劳失效和性能不确定性的了解,带来了重大挑战,并削弱了将 LPBF 部署用于高后果应用的潜力。该学院早期职业发展 (CAREER) 奖支持基础研究,以了解 LPBF 加工对缺陷和后续疲劳行为的影响,增进对几何形状复杂且承受多轴载荷的 LPBF 零件的疲劳散射的了解。这项工作将建立一个以物理为中心的机器学习框架,用于疲劳寿命预测,为未来动态承载应用的金属增材制造生产奠定技术基础,从而增强美国工业的竞争力。该职业项目还将整合教育和外展计划,旨在通过积极吸引 K-12 学生接受 STEM 教育并招募女性和少数族裔参与研究,扩大代表性不足群体的参与,为未来几代不同的工程师提供不可或缺的知识和技能。制造创新和大数据的时代。这一早期职业生涯的最终目标是了解多轴载荷下复杂 LPBF 零件的疲劳失效,以进行数据驱动的疲劳寿命预测。该研究将调查最高应力集中下塑性变形和裂纹萌生引起的疲劳失效的性质,并将疲劳寿命预测转化为使用多尺度方法评估易损区域的裂纹扩展。在微观尺度上,将根据与疲劳失效的相关性来识别具有裂纹萌生特征的关键缺陷(通过 X 射线计算机断层扫描或光学轮廓测量法);将使用断裂力学和数据密集型统计来检查关键缺陷的影响及其对裂纹扩展的空间相互作用。在零件尺度上,将通过解耦多轴载荷对应力和应变行为进行有限元建模来检查最高应力集中的薄弱区域。然后,关键缺陷的影响和易损部位的主应力将被纳入深度学习的分层图卷积网络中,以模拟它们对裂纹扩展的协同影响,并通过高级数据分析计算 LPBF 零件的疲劳寿命。研究结果预计将产生与 LPBF 零件疲劳性能相关的缺陷形成的新知识,揭示多尺度因素对疲劳断裂的协同影响,并进一步将 LPBF 用于高后果的应用。该奖项反映了 NSF 的法定使命,并被视为值得通过使用基金会的智力优点和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jia Liu其他文献
Supra-ilioinguinal versus modified Stoppa approach in the treatment of acetabular fractures: reduction quality and early clinical results of a retrospective study
髂腹股沟上入路与改良 Stoppa 入路治疗髋臼骨折:回顾性研究的复位质量和早期临床结果
- DOI:
10.1186/s13018-019-1428-y - 发表时间:
2019-11-14 - 期刊:
- 影响因子:2.6
- 作者:
Sheng Yao;Kaifang Chen;Yanhui Ji;Fengzhao Zhu;Lian Zeng;Zekang Xiong;Ting;Fan Yang;Jia Liu;Xiao - 通讯作者:
Xiao
Self-Assembled Sulfated Hyaluronan Coating Modulates Transforming Growth Factor-Beta1 Penetration for Corneal Scarring Alleviation.
自组装硫酸化透明质酸涂层可调节转化生长因子-β1 的渗透,从而减轻角膜疤痕。
- DOI:
10.1021/acsami.3c02910 - 发表时间:
2023-06-21 - 期刊:
- 影响因子:9.5
- 作者:
Yongrui Huang;Jia Liu;Xiaomin Sun;Yuehai Peng;Yingni Xu;Sa Liu;Wenjing Song;Li Ren - 通讯作者:
Li Ren
A UPLC-MS/MS method for comparative pharmacokinetics study of morusin and morin in normal and diabetic rats.
一种 UPLC-MS/MS 方法,用于比较桑色素和桑色素在正常和糖尿病大鼠中的药代动力学研究。
- DOI:
10.1002/bmc.4516 - 发表时间:
2019-07-01 - 期刊:
- 影响因子:0
- 作者:
Jia Liu;Y. Mu;S. Xiong;Peilu Sun;Zhipeng Deng - 通讯作者:
Zhipeng Deng
A Novel Crowdsourcing Inference Method
一种新颖的众包推理方法
- DOI:
- 发表时间:
2024-09-14 - 期刊:
- 影响因子:0
- 作者:
Jia Liu;William C. Tang;Yuanfang Chen;Mingchu Li;M. Guizani - 通讯作者:
M. Guizani
Progression of the role of CRYAB in signaling pathways and cancers
CRYAB 在信号通路和癌症中的作用进展
- DOI:
10.2147/ott.s201799 - 发表时间:
2019-05-30 - 期刊:
- 影响因子:0
- 作者:
Junfei Zhang;Jia Liu;Jiali Wu;Wenfeng Li;Zhongwei Chen;Lishan Yang - 通讯作者:
Lishan Yang
Jia Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jia Liu', 18)}}的其他基金
ERASE-PFAS: Exploring efficient pilot-scale treatment of per- and polyfluoroalkyl substances and comingled chlorinated solvents in groundwater using magnetic nanomaterials
ERASE-PFAS:探索使用磁性纳米材料对地下水中的全氟烷基物质和多氟烷基物质以及混合氯化溶剂进行有效的中试规模处理
- 批准号:
2305729 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
RAPID: DRL AI: A Career-Driven AI Educational Program in Smart Manufacturing for Underserved High-school Students in the Alabama Black Belt Region
RAPID:DRL AI:针对阿拉巴马州黑带地区服务不足的高中生的智能制造领域职业驱动型人工智能教育计划
- 批准号:
2338987 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
ERASE-PFAS: Exploring efficient pilot-scale treatment of per- and polyfluoroalkyl substances and comingled chlorinated solvents in groundwater using magnetic nanomaterials
ERASE-PFAS:探索使用磁性纳米材料对地下水中的全氟烷基物质和多氟烷基物质以及混合氯化溶剂进行有效的中试规模处理
- 批准号:
2305729 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
FMSG: Cyber: Federated Deep Learning for Future Ubiquitous Distributed Additive Manufacturing
FMSG:网络:面向未来无处不在的分布式增材制造的联合深度学习
- 批准号:
2134689 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SpecEES: Toward Spectral and Energy Efficient Cross-Layer Designs for Millimeter-Wave-Based Massive MIMO Networks
SpecEES:面向基于毫米波的大规模 MIMO 网络的频谱和节能跨层设计
- 批准号:
2140277 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Preparing to Care for a Culturally and Linguistically Diverse UK Patient Population: How Healthcare Students Develop Their Cultural Competence
准备照顾文化和语言多样化的英国患者群体:医疗保健学生如何发展他们的文化能力
- 批准号:
ES/W004860/1 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Fellowship
NeTS: Small: Toward Optimal, Efficient, and Holistic Networking Design for Massive-MIMO Wireless Networks
NeTS:小型:面向大规模 MIMO 无线网络的优化、高效和整体网络设计
- 批准号:
2102233 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CPS: Medium: An AI-enabled Cyber-Physical-Biological System for Cardiac Organoid Maturation
CPS:中:用于心脏类器官成熟的人工智能网络物理生物系统
- 批准号:
2038603 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CIF: Small: Taming Convergence and Delay in Stochastic Network Optimization with Hessian Information
CIF:小:利用 Hessian 信息驯服随机网络优化中的收敛和延迟
- 批准号:
2110252 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Computing-Aware Network Optimization for Efficient Distributed Data Analytics at the Wireless Edge
职业:计算感知网络优化,用于无线边缘的高效分布式数据分析
- 批准号:
2110259 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
相似国自然基金
“双向挤压”困境下数字技术驱动中国制造业转型升级的机制与路径研究
- 批准号:72363017
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
逆全球化背景下中国制造业创新网络韧性的形成、演进及评价机制研究
- 批准号:72363015
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
创新链管理视角下高端装备制造业开放创新的风险识别、评估与治理对策研究
- 批准号:72304262
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
中国西部城市不同所有制制造业企业的全球主动嵌入:全球网络、行业差异和安全评估
- 批准号:42371198
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
复合系统视阈下制造业绿色转型的演化机理、绩效评价及调控策略研究
- 批准号:72373138
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
相似海外基金
FMRG: Cyber: Manufacturing USA: NextG-Enabled Manufacturing of the Future (NextGEM)
FMRG:网络:美国制造:支持 NextG 的未来制造 (NextGEM)
- 批准号:
2328260 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
FMRG: Cyber: Manufacturing USA: NextG-Enabled Manufacturing of the Future (NextGEM)
FMRG:网络:美国制造:支持 NextG 的未来制造 (NextGEM)
- 批准号:
2328260 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
FMRG: Cyber: Manufacturing USA: Material-on-demand manufacturing through convergence of manufacturing, AI and materials science
FMRG:网络:美国制造:通过制造、人工智能和材料科学的融合实现按需制造材料
- 批准号:
2328395 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
FMRG: Cyber: Manufacturing USA: Material-on-demand manufacturing through convergence of manufacturing, AI and materials science
FMRG:网络:美国制造:通过制造、人工智能和材料科学的融合实现按需制造材料
- 批准号:
2328395 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
FMRG: Cyber: Manufacturing USA: Exploiting Spatio-Temporal Interdependency Between Electrochemical Manufacturing and Power Grid to Optimize Flexibility and Sustainability
FMRG:网络:美国制造:利用电化学制造和电网之间的时空相互依赖性来优化灵活性和可持续性
- 批准号:
2328160 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant