CAREER: Multi-Dimensional Photonic Accelerators for Scalable and Efficient Computing
职业:用于可扩展和高效计算的多维光子加速器
基本信息
- 批准号:2337674
- 负责人:
- 金额:$ 55.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-04-01 至 2029-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Despite advances in parallel computing platforms such as graphics processing units (GPUs), the growing demand for high computing power in emerging artificial intelligence (AI) applications far exceeds hardware efficiency improvements in current electronic systems. Optical computing promises improved efficiency and speed over conventional computing hardware, but is currently limited by power consumption, precision, and scalability issues. This project aims to revolutionize the field of AI by addressing these outstanding issues in current photonic computing architectures, thus unleashing the advantages of photonic computing for AI. In this CAREER proposal, the PI plans to advance optical computing through: (1) integrating photonic circuits and image sensors, (2) demonstrating multi-dimensional photonic computing, and (3) developing a simulation framework for large-scale photonic neural networks. Beyond technical advancements, the project’s educational goals include cultivating a diverse high-tech workforce in Pittsburgh through affordable educational tools, annual STEM workshops, and mentoring undergraduate researchers. Voluntary assessments in collaboration with Pitt's Engineering Education Research Center will measure educational outcomes, providing quantifiable metrics for long-term impact.This project aims to address three major limitations of current photonic computing platforms—power hungry electrical readout, limited analog precision, and poor scalability—to enable a fast and efficient computing architecture which could transform the field of artificial intelligence (AI). Despite notable advances in parallel computing, gains in hardware efficiency are unable to keep pace with the growing demand for extremely high computing power required by emerging AI applications and services. This is primarily due to the fundamental trade-off between clock speed and computational efficiency in the electronic domain stemming from the capacitance and Joule heating of metal interconnects. The PI will address this fundamental issue by performing computation in the optical domain using multiple photonic degrees of freedom for improved compute efficiency and speed. In this CAREER proposal, the PI will create new knowledge and extend the boundaries of optical computing through three unified tasks which: (1) integrate photonics and image sensors for robust and scalable matrix operations; (2) demonstrate multi-dimensional photonic computing for complex-valued matrix operations; and (3) develop a simulation framework to model the compute efficiency and latency of the proposed hardware for large-scale deep neural networks. Beyond technical advancements, the PI aims to cultivate a diverse high-tech workforce in the greater Pittsburgh area. Initiatives include creating affordable educational tools exposing students to nanotechnology applications in AI, conducting annual STEM workshops in collaboration with Pitt's outreach program (LEAD), and mentoring undergraduate researchers through Pitt's EXCEL summer research program. Voluntary assessments will measure educational outcomes, providing quantifiable metrics for the project's broader impact on workforce diversity and innovation in AI.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
尽管图形处理单元(GPU)等并行计算平台取得了进步,但新兴人工智能(AI)应用对高计算能力不断增长的需求远远超过了当前电子系统中硬件效率的提高,光学计算有望比传统计算提高效率和速度。该项目旨在通过解决当前光子计算架构中的这些突出问题来彻底改变人工智能领域,从而释放光子计算在人工智能领域的优势。 ,P.I.计划通过以下方式推进光学计算:(1) 集成光子电路和图像传感器,(2) 演示多维光子计算,以及 (3) 开发大规模光子神经网络的模拟框架 除了技术进步之外,该项目的教育意义。目标包括通过负担得起的教育工具、年度 STEM 研讨会以及指导本科生研究人员,在匹兹堡培养多元化的高科技劳动力。与匹兹堡工程教育研究中心合作的自愿评估将衡量教育成果,提供长期影响的量化指标。该项目旨在解决当前光子计算平台的三个显着限制——耗电的电读出、有限的模拟精度和较差的可扩展性——以实现快速高效的计算架构,尽管并行取得了进步,但该架构可以改变人工智能(AI)领域。计算方面,硬件效率的提高无法跟上新兴人工智能应用和服务对极高计算能力不断增长的需求,这主要是由于电子领域的时钟速度和计算效率之间的根本权衡。金属的电容和焦耳热PI 将通过使用多个光子自由度在光域中执行计算来解决这一基本问题,以提高计算效率和速度。在这个职业提案中,PI 将通过三个统一来创造新知识并扩展光计算的边界。任务:(1) 集成光子学和图像传感器以实现稳健且可扩展的矩阵运算;(2) 演示用于复值矩阵运算的多维光子计算;(3) 开发一个模拟框架来模拟计算效率和延迟建议的硬件除了技术进步之外,PI 还致力于在大匹兹堡地区培养多元化的高科技劳动力,其举措包括创建负担得起的教育工具,让学生接触人工智能中的纳米技术应用,与匹兹堡大学合作举办年度 STEM 研讨会。外展计划(LEAD),并通过皮特的 EXCEL 夏季研究计划指导本科生研究人员将衡量教育成果,为该项目对劳动力多样性和人工智能创新的更广泛影响提供量化指标。该奖项反映了 NSF 的法定奖项。使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nathan Youngblood其他文献
Leveraging Continuously Differentiable Activation Functions for Learning in Quantized Noisy Environments
利用连续可微的激活函数在量化噪声环境中进行学习
- DOI:
10.48550/arxiv.2402.02593 - 发表时间:
2024-02-04 - 期刊:
- 影响因子:0
- 作者:
Vivswan Shah;Nathan Youngblood - 通讯作者:
Nathan Youngblood
OFHE: An Electro-Optical Accelerator for Discretized TFHE
OFHE:用于离散化 TFHE 的电光加速器
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Meng Zheng;Cheng Chu;Qian Lou;Nathan Youngblood;Mo Li;Sajjad Moazeni;Lei Jiang - 通讯作者:
Lei Jiang
Nathan Youngblood的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nathan Youngblood', 18)}}的其他基金
Collaborative Research: Fast and efficient phase-change photonics using low-dimensional materials
合作研究:使用低维材料的快速高效的相变光子学
- 批准号:
2210169 - 财政年份:2022
- 资助金额:
$ 55.22万 - 项目类别:
Standard Grant
Collaborative Research: Waveguide-Integrated Graphene Nano-tweezERs (WIGNER) for rapid sorting and analysis of nanovesicles and viruses
合作研究:用于快速分选和分析纳米囊泡和病毒的波导集成石墨烯纳米镊子(WIGNER)
- 批准号:
2227459 - 财政年份:2022
- 资助金额:
$ 55.22万 - 项目类别:
Standard Grant
Collaborative Research: Waveguide-Integrated Graphene Nano-tweezERs (WIGNER) for rapid sorting and analysis of nanovesicles and viruses
合作研究:用于快速分选和分析纳米囊泡和病毒的波导集成石墨烯纳米镊子(WIGNER)
- 批准号:
2227459 - 财政年份:2022
- 资助金额:
$ 55.22万 - 项目类别:
Standard Grant
High Endurance Phase-Change Devices for Electrically Reconfigurable Optical Systems
用于电可重构光学系统的高耐久性相变器件
- 批准号:
2028624 - 财政年份:2020
- 资助金额:
$ 55.22万 - 项目类别:
Standard Grant
Elucidating Structural Transformations in MoTe2 for Efficient Optoelectronic Memory
阐明 MoTe2 的结构转变以实现高效光电存储器
- 批准号:
2003325 - 财政年份:2020
- 资助金额:
$ 55.22万 - 项目类别:
Continuing Grant
相似国自然基金
多维度高次谐波谱中的多电子动力学研究
- 批准号:12304304
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
融合时域维度的多源异构核电职业健康风险评估与可视化研究
- 批准号:72301244
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
不同维度铁硒及其衍生高温超导体系的多物理调控
- 批准号:12374458
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
多尺度多维度原位研究退役锂离子电池三元正极材料的直接再生机理
- 批准号:22375081
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
中医药治疗新型冠状病毒感染恢复期多系统多维度评价指标集及测量方法研究
- 批准号:82305437
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Brain metabolism across the lifespan using multi-parametric MRS
使用多参数 MRS 分析整个生命周期的脑代谢
- 批准号:
10738647 - 财政年份:2023
- 资助金额:
$ 55.22万 - 项目类别:
Indiana Center for Advanced Renal Microscopy and Molecular Imaging
印第安纳高级肾脏显微镜和分子成像中心
- 批准号:
10747616 - 财政年份:2023
- 资助金额:
$ 55.22万 - 项目类别:
CAREER: A Multi-dimensional Study of Electromagnetic Interference in Wide Bandgap Power Electronics: Modeling, Estimation, and Mitigation
职业:宽带隙电力电子中电磁干扰的多维研究:建模、估计和缓解
- 批准号:
2236846 - 财政年份:2023
- 资助金额:
$ 55.22万 - 项目类别:
Continuing Grant
CAREER: Enabling the Accurate Simulation of Multi-Dimensional Core-Level Spectroscopies in Molecular Complexes using Time-Dependent Density Functional Theory
职业:使用瞬态密度泛函理论实现分子复合物中多维核心级光谱的精确模拟
- 批准号:
2337902 - 财政年份:2023
- 资助金额:
$ 55.22万 - 项目类别:
Standard Grant
High-throughput closed-loop direct aberration sensing and correction for multiphoton imaging in live animals
用于活体动物多光子成像的高通量闭环直接像差传感和校正
- 批准号:
10572572 - 财政年份:2023
- 资助金额:
$ 55.22万 - 项目类别: