Collaborative Research: IMR: MM-1A: Functional Data Analysis-aided Learning Methods for Robust Wireless Measurements

合作研究:IMR:MM-1A:用于稳健无线测量的功能数据分析辅助学习方法

基本信息

  • 批准号:
    2319342
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2026-09-30
  • 项目状态:
    未结题

项目摘要

With the growth of large-scale, heterogeneous, dynamic, and complex wireless networks, how to achieve accurate and robust measurements in 5G networks and beyond becomes a challenging and important problem. Most existing data-driven solutions are black-box approaches, which may not be robust and adaptive, and work only for low-dimensional and discrete data. In fact, wireless data belong to the class of functional data, which can be represented by curves or functions. High-dimensional wireless datasets can be better handled by functional data analysis (FDA). Recognizing the significance of the aforementioned problems, this project aims to bridge the gap between FDA-based learning and wireless measurement. The proposed research falls into the following four interwoven thrusts. (i) Functional Data Regression for Sparse Wireless Measurements: to develop a deep learning-based approach to address fundamental regression problems of functional data. (ii) FDA-based Transfer Learning for Dynamic Wireless Measurements: to study transfer learning for functional data regression and classification under the distribution shift between test data and training data for effective wireless measurements in dynamic environments. (iii) Quantile FDA-based Learning for Robust Wireless Measurements and Control: to develop a deep learning-based approach to address the fundamental bottleneck of quantile regression-based methods. (iv) Wireless Measurement Applications for Integration and Validation. If successful, this research will greatly advance the practice and understanding of functional data for wireless measurement and related fields. The educational and outreach components include: (i) Curriculum enhancement with learning theory and FDA, and joint developing a graduate course on FDA-based learning for wireless measurements. (ii) Engaging undergrads with hands-on projects. The existing outreach programs will be leveraged to offer research opportunities and seminars to undergrads, with emphasis on engaging underrepresented students. (iii) Outreach activities to increase public awareness, include journal publications, conference presentations, seminars, IEEE distinguished lectures, journal special issues, and workshops and special sessions at major conferences.The code produced from this project will be disseminated at the public repository GitHub (https://github.com/). A project website will be maintained at Auburn University with URL: https://www.eng.auburn.edu/~szm0001/proj_lMR23.html. This project website will be frequently and regularly updated for dissemination of the outcomes from this project, including a description of the project, project team, major outcomes such as publications, codes and datasets, as well as an acknowledgement of NSF support to this project. This website will be managed/updated by the PI for the three-year project period. This project is jointly funded by the Networking Technology and Systems (NeTS) program, the Established Program to Stimulate Competitive Research (EPSCoR), the Statistics program in the Division of Mathematical Sciences (DMS), and the Computing and Communication Foundations Division.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着大规模,异构,动态和复杂的无线网络的增长,如何在5G网络及以后实现准确和健壮的测量结果成为一个具有挑战性和重要的问题。大多数现有数据驱动的解决方案是黑框方法,可能不健壮且自适应,并且仅适用于低维和离散数据。实际上,无线数据属于功能数据类,可以用曲线或功能表示。可以通过功能数据分析(FDA)更好地处理高维无线数据集。认识到上述问题的重要性,该项目旨在弥合基于FDA的学习和无线测量之间的差距。拟议的研究属于以下四个交织的推力。 (i)稀疏无线测量值的功能数据回归:开发一种基于深度学习的方法来解决功能数据的基本回归问题。 (ii)用于动态无线测量的基于FDA的转移学习:在测试数据和培训数据之间的分布变化下,研究转移学习,以进行功能数据回归和分类,以在动态环境中进行有效的无线测量。 (iii)基于分位数的基于FDA的学习,用于可靠的无线测量和控制:开发一种基于深度学习的方法来解决基于分位回归方法的基本瓶颈。 (iv)无线测量应用程序进行集成和验证。如果成功,这项研究将大大提高对无线测量和相关领域功能数据的实践和理解。教育和宣传组成部分包括:(i)通过学习理论和FDA来增强课程,以及共同开发有关基于FDA的学习研究生课程,以进行无线测量。 (ii)与动手项目一起吸引本科生。现有的外展计划将被利用,为本科生提供研究机会和研讨会,重点是吸引代表性不足的学生。 (iii)宣传活动以提高公众意识,包括期刊出版物,会议演讲,研讨会,IEEE杰出讲座,期刊特殊问题和讲习班以及在大型会议上的特殊会议。该项目制作的代码将在公共存储库Github(https:///github.com/)中传播。一个项目网站将在Auburn University使用url:https://www.eng.auburn.edu/~szm0001/proj_lmr23.html。该项目网站将经常且定期更新以传播该项目的结果,包括对项目,项目团队,出版物,代码和数据集等主要成果的描述,以及对该项目的NSF支持的确认。该网站将由PI在三年项目期间进行管理/更新。该项目由网络技术和系统(NETS)计划共同资助,启发竞争研究的既定计划(EPSCOR),数学科学部(DMS)(DMS)的统计计划以及计算和通信基金会部门。该奖项反映了NSF的法定任务,并通过评估了基金会的crtulial and crowia and Broadia and Broadia and Broadia and Broadia and Broadia and Broadia and Broadia and Broadia and Broadia and Broadia and Broadia and Broadia and Broadia and Broadia and Broadia and Broadia和Broadia and Broadia and Broadia and Broadia and Broadia and broadia and Broadia。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shiwen Mao其他文献

Scheduling of UAV-Assisted Millimeter Wave Communications for High-Speed Railway
无人机辅助高铁毫米波通信调度
  • DOI:
    10.1109/tvt.2022.3176855
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    6.8
  • 作者:
    Yibing Wang;Yong Niu;Hao Wu;Shiwen Mao;Bo Ai;Zhangdui Zhong;Ning Wang
  • 通讯作者:
    Ning Wang
Optimized Content Caching and User Association for Edge Computing in Densely Deployed Heterogeneous Networks
密集部署的异构网络中边缘计算的优化内容缓存和用户关联
  • DOI:
    10.1109/tmc.2020.3033563
  • 发表时间:
    2020-10
  • 期刊:
  • 影响因子:
    7.9
  • 作者:
    Yun Li;Hui Ma;Lei Wang;Shiwen Mao;Guoyin Wang
  • 通讯作者:
    Guoyin Wang
基于轻量级深度神经网络的电磁信号调制识别技术
  • DOI:
    10.11959/j.issn.1000-436x.2020237
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    张思成;林云;涂涯;Shiwen Mao
  • 通讯作者:
    Shiwen Mao
Complex-Valued Networks for Automatic Modulation Classification
用于自动调制分类的复值网络
Resource Allocation and Computation Offloading in a Millimeter-Wave Train-Ground Network
毫米波车地网络中的资源分配和计算卸载
  • DOI:
    10.1109/tvt.2022.3185331
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    6.8
  • 作者:
    Linqian Li;Yong Niu;Shiwen Mao;Bo Ai;Zhangdui Zhong;Ning Wang;Yali Chen
  • 通讯作者:
    Yali Chen

Shiwen Mao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shiwen Mao', 18)}}的其他基金

Collaborative Research: CCSS: When RFID Meets AI for Occluded Body Skeletal Posture Capture in Smart Healthcare
合作研究:CCSS:当 RFID 与人工智能相遇,用于智能医疗保健中闭塞的身体骨骼姿势捕获
  • 批准号:
    2245608
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: SCH: AI-driven RFID Sensing for Smart Health Applications
合作研究:SCH:面向智能健康应用的人工智能驱动的 RFID 传感
  • 批准号:
    2306789
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
RINGS: l-RIM: Learning based Resilient Immersive Media-Compression, Delivery, and Interaction
RINGS:l-RIM:基于学习的弹性沉浸式媒体压缩、交付和交互
  • 批准号:
    2148382
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: CNS Core: Medium: Data Augmentation and Adaptive Learning for Next Generation Wireless Spectrum Systems
合作研究:CNS 核心:媒介:下一代无线频谱系统的数据增强和自适应学习
  • 批准号:
    2107190
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CCSS: Autonomous Drone and Ground Robot Cooperative Tasking in Complex Indoor Environments
CCSS:复杂室内环境中的自主无人机和地面机器人协作任务
  • 批准号:
    1923163
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
RUI: SpecEES: Collaborative Research: Enabling Secure, Energy-Efficient, and Smart In-Band Full Duplex Wireless
RUI:SpecEES:协作研究:实现安全、节能和智能的带内全双工无线
  • 批准号:
    1923717
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Phase I IUCRC Auburn University: Fiber-Wireless Integration and Networking (FiWIN) Center for Heterogeneous Mobile Data Communications
第一阶段 IUCRC 奥本大学:异构移动数据通信光纤无线集成和网络 (FiWIN) 中心
  • 批准号:
    1822055
  • 财政年份:
    2018
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
WiFiUS: RF Sensing in Internet of Things: When Deep Learning Meets CSI Tensor
WiFiUS:物联网中的射频传感:当深度学习遇到 CSI Tensor
  • 批准号:
    1702957
  • 财政年份:
    2017
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
NeTS: Small: Collaborative Research: Exploring the 60 GHz Spectral Frontier for Multi-Gigabit Wireless Networks
NetS:小型:协作研究:探索多千兆位无线网络的 60 GHz 频谱前沿
  • 批准号:
    1320664
  • 财政年份:
    2013
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: EARS: Cognitive and Efficient Spectrum Access in Autonomous Wireless Networks
合作研究:EARS:自主无线网络中的认知和高效频谱访问
  • 批准号:
    1247955
  • 财政年份:
    2013
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似国自然基金

支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
  • 批准号:
    62371263
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
腙的Heck/脱氮气重排串联反应研究
  • 批准号:
    22301211
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
  • 批准号:
    52364038
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
  • 批准号:
    82371176
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
  • 批准号:
    82305286
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: IMR: MM-1C: Methods for Active Measurement of the Domain Name System
合作研究:IMR:MM-1C:域名系统主动测量方法
  • 批准号:
    2319367
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: IMR:MM-1B: Privacy in Internet Measurements Applied To WAN and Telematics
合作研究:IMR:MM-1B:应用于广域网和远程信息处理的互联网测量隐私
  • 批准号:
    2319409
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: IMR: MM-1B: Privacy-Preserving Data Sharing for Mobile Internet Measurement and Traffic Analytics
合作研究:IMR:MM-1B:移动互联网测量和流量分析的隐私保护数据共享
  • 批准号:
    2319486
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: IMR: MM-1A: Scalable Statistical Methodology for Performance Monitoring, Anomaly Identification, and Mapping Network Accessibility from Active Measurements
合作研究:IMR:MM-1A:用于性能监控、异常识别和主动测量映射网络可访问性的可扩展统计方法
  • 批准号:
    2319592
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: IMR: MM-1B: Privacy-Preserving Data Sharing for Mobile Internet Measurement and Traffic Analytics
合作研究:IMR:MM-1B:移动互联网测量和流量分析的隐私保护数据共享
  • 批准号:
    2344341
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了