High-throughput closed-loop direct aberration sensing and correction for multiphoton imaging in live animals
用于活体动物多光子成像的高通量闭环直接像差传感和校正
基本信息
- 批准号:10572572
- 负责人:
- 金额:$ 10.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAcuteAdultAnimalsAttenuatedBehaviorBiological ProcessBiomedical ResearchBrainCancer BiologyCell CommunicationComplexDendritic CellsDeteriorationElasticityFluorescenceFoundationsGoalsHeatingImageImaging DeviceImmune responseImmunologyInterference MicroscopyLasersLightLightingMeasurementMeasuresMethodsMicroscopeMicroscopyMusMuscleNeuronsNeurosciencesNoiseOperative Surgical ProceduresOptical MethodsOrganismPenetrationPhasePhotobleachingPhotonsPredispositionProceduresProcessResearchResectedResolutionScanningScientistSignal TransductionSliceSourceSpecificitySpecimenSpeedSystemT-LymphocyteTechniquesTechnologyThalamic structureTimeTissue SampleTissue imagingTissuesTubeZebrafishadaptive opticscareercell motilitycellular imagingconfocal imagingfluorophoreimprovedin vivolymph nodesmulti-photonmultiphoton imagingmultiphoton microscopynanoscalenew technologynon-invasive systemnovelphotomultiplierprogramsreconstructionsubmicronthree photon microscopytissue phantomtooltwo-photon
项目摘要
Project Summary
This project aims to deliver real-time aberration-corrected multiphoton imaging with improved signal-to-
noise-ratio (SNR) and spatial resolution for studying turbid deep-tissue (~2 mm) of living animals at the cellular
level. Multiphoton microscopy (MPM) has been a useful tool to study biological processes due to its high
specificity and sub-wavelength resolution. Particularly, compared to one-photon imaging, MPM uses excitation
light with a longer wavelength that penetrates deeper into tissues, while the nonlinear process requires a
multiphoton interaction that renders three-dimensional localized excitation. However, the higher-order nonlinear
excitation is more susceptible to focus aberrations, thus, posing a limit for penetration depth in highly scattering
tissues. Adaptive optics (AO) has been a promising tool for aberration sensing and correction for MPM in living
systems. However, two major issues in existing AO methods, 1) accuracy, and 2) speed in aberration sensing,
remain challenging to in vivo real-time deep-tissue imaging.
I propose to develop a new high-throughput direct aberration sensing and correction method for MPM,
termed confocal gradient light interference microscopy (CGLIM). This technique aims to measure the aberrated
wavefront using a common-path, phase-shifting interferometer, to undo the systematic and specimen-induced
aberration which, in turn, will improve the quality of the excitation focus and enhance the signal strength.
Specifically, compared to other efforts, CGLIM uses the long-wavelength (~1.7 μm) elastic backscattered light
from tissues to directly measure the aberrated wavefront of the excitation beam, resulting in substantially lower
power compared to fluorescence techniques and eliminating photodamage, photobleaching, or heating damage
of living systems. Importantly, CGLIM measures the aberrated wavefront only near the focal plane with
nanoscale sensitivity (~2 nm or ~0.002 rad) owing to its common-path, confocal configuration. Furthermore,
CGLIM can validate the accuracy of the aberration sensing by itself via phase conjugation. Lastly, the aberration
correction procedure is directly fed by CGLIM’s measurement in a closed loop without any iterations. CGLIM is
also readily implemented in any laser-scanning system with objectives of different numeric apertures.
With the proposed new method, I will first demonstrate aberration sensing and correction using CGLIM
with tissue phantoms and ex vivo tissue slices. Then, I will combine CGLIM with three-photon (3P) microscopy
to demonstrate aberration-corrected 3P imaging of neuronal activities in live mice and intact adult zebrafish
brains. Finally, I aim to combine the aberration-corrected MPM with the adaptive excitation source and polygon
scanning developed in-house to study real-time neuronal activities in deep regions of live brains, and T cell –
dendritic cell interactions in deep regions of a mouse’s lymph node.
With this project, I hope to establish my research focus on aberration-corrected interferometric
multiphoton imaging for deep tissues in living animals and enable more studies in neuroscience and immunology.
项目概要
该项目旨在提供实时像差校正多光子成像,并改进信号到
噪声比 (SNR) 和空间分辨率,用于在细胞中研究活体动物的浑浊深层组织 (~2 mm)
多光子显微镜(MPM)因其高水平而成为研究生物过程的有用工具。
特别是,与单光子成像相比,MPM 使用激发。
波长较长的光可以更深入地穿透组织,而非线性过程需要
多光子相互作用呈现三维局部激发然而,高阶非线性。
激发更容易受到焦点像差的影响,因此,在高散射中限制了穿透深度
自适应光学 (AO) 已成为活体 MPM 的像差传感和校正的有前途的工具。
然而,现有 AO 方法存在两个主要问题,1)精度,2)像差传感的速度,
体内实时深层组织成像仍然具有挑战性。
我建议为 MPM 开发一种新的高通量直接像差传感和校正方法,
称为共焦梯度光干涉显微镜(CGLIM),该技术旨在测量像差。
使用共路径相移干涉仪进行波前处理,以消除系统和样本引起的干扰
像差,反过来又会提高激励焦点的质量并增强信号强度。
具体来说,与其他研究相比,CGLIM 使用长波长(~1.7 μm)弹性背散射光
从组织中直接测量激发光束的像差波前,从而显着降低
与荧光技术相比功率更高,并消除光损伤、光漂白或热损伤
重要的是,CGLIM 仅测量焦平面附近的像差波前。
由于其共路径、共焦配置,纳米级灵敏度(~2 nm 或~0.002 rad)。
CGLIM 可以通过相位共轭来验证像差传感的准确性。
校正过程直接由闭环中的 CGLIM 测量提供,无需任何迭代。
也很容易在具有不同数值孔径物镜的任何激光扫描系统中实现。
通过所提出的新方法,我将首先使用 CGLIM 演示像差传感和校正
然后,我将 CGLIM 与三光子 (3P) 显微镜结合起来。
演示活体小鼠和完整成年斑马鱼神经活动的像差校正 3P 成像
最后,我的目标是将像差校正 MPM 与自适应激励源和多边形结合起来。
内部开发的扫描技术用于研究活体大脑深层区域和 T 细胞的实时神经活动 –
小鼠淋巴结深层区域的树突状细胞相互作用。
通过这个项目,我希望将我的研究重点放在像差校正干涉测量上
用于活体动物深层组织的多光子成像,使更多的神经科学和免疫学研究成为可能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xi Chen其他文献
Xi Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xi Chen', 18)}}的其他基金
Crosstalk between the ER Stress Response and Mitochondrial Fatty Acid Oxidation in MYC-driven Breast Cancer
MYC 驱动的乳腺癌中 ER 应激反应与线粒体脂肪酸氧化之间的串扰
- 批准号:
10581179 - 财政年份:2023
- 资助金额:
$ 10.41万 - 项目类别:
A Life Course Approach to Understanding Racial and Ethnic Disparities in Alzheimer's Disease and Related Dementias and Health Care
了解阿尔茨海默病及相关痴呆症和医疗保健中的种族和民族差异的生命全程方法
- 批准号:
10448032 - 财政年份:2022
- 资助金额:
$ 10.41万 - 项目类别:
Proteostasis Reprogramming in Mutant KRAS-Driven Cancers
突变 KRAS 驱动的癌症中的蛋白质稳态重编程
- 批准号:
10587281 - 财政年份:2022
- 资助金额:
$ 10.41万 - 项目类别:
A Life Course Approach to Understanding Racial and Ethnic Disparities in Alzheimer's Disease and Related Dementias and Health Care
了解阿尔茨海默病及相关痴呆症和医疗保健中种族和民族差异的生命全程方法
- 批准号:
10650381 - 财政年份:2022
- 资助金额:
$ 10.41万 - 项目类别:
Elucidating perifoveal vascular development in infants
阐明婴儿中心凹周围血管发育
- 批准号:
10696178 - 财政年份:2022
- 资助金额:
$ 10.41万 - 项目类别:
Elucidating perifoveal vascular development in infants
阐明婴儿中心凹周围血管发育
- 批准号:
10696178 - 财政年份:2022
- 资助金额:
$ 10.41万 - 项目类别:
Chemoenzymatic construction of synthetic human milk oligosaccharide (HMO) glycome
合成人乳低聚糖 (HMO) 糖组的化学酶法构建
- 批准号:
10567752 - 财政年份:2022
- 资助金额:
$ 10.41万 - 项目类别:
Chemoenzymatic construction of synthetic human milk oligosaccharide (HMO) glycome
合成人乳低聚糖 (HMO) 糖组的化学酶法构建
- 批准号:
10710393 - 财政年份:2022
- 资助金额:
$ 10.41万 - 项目类别:
Chemoenzymatic synthesis of bacterial nonulosonic acids and glycans
细菌非酮糖酸和聚糖的化学酶法合成
- 批准号:
10186358 - 财政年份:2021
- 资助金额:
$ 10.41万 - 项目类别:
Chemoenzymatic synthesis of bacterial nonulosonic acids and glycans
细菌非酮糖酸和聚糖的化学酶法合成
- 批准号:
10553186 - 财政年份:2021
- 资助金额:
$ 10.41万 - 项目类别:
相似国自然基金
去泛素化酶USP5调控P53通路在伴E2A-PBX1成人ALL的致病机制研究
- 批准号:81900151
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
核基质结合区蛋白SATB1调控CCR7抑制急性T淋巴细胞白血病中枢浸润的作用与机制
- 批准号:81870113
- 批准年份:2018
- 资助金额:55.0 万元
- 项目类别:面上项目
成人及儿童急性淋巴细胞白血病的基因组转录组生物信息学分析方法建立及数据分析
- 批准号:81570122
- 批准年份:2015
- 资助金额:60.0 万元
- 项目类别:面上项目
NR3C1基因突变在成人急性淋巴细胞白血病耐药与复发中的作用与机制研究
- 批准号:81470309
- 批准年份:2014
- 资助金额:75.0 万元
- 项目类别:面上项目
儿童和成人急性T淋巴细胞白血病中miRNA和转录因子共调控网络的差异性研究
- 批准号:31270885
- 批准年份:2012
- 资助金额:80.0 万元
- 项目类别:面上项目
相似海外基金
Mechanical signaling through the nuclear membrane in lung alveolar health
通过核膜的机械信号传导影响肺泡健康
- 批准号:
10677169 - 财政年份:2023
- 资助金额:
$ 10.41万 - 项目类别:
How microglia sense and regulate neuronal activity in the adult brain
小胶质细胞如何感知和调节成人大脑中的神经元活动
- 批准号:
10671376 - 财政年份:2023
- 资助金额:
$ 10.41万 - 项目类别:
Targeting Menin in Acute Leukemia with Upregulated HOX Genes
通过上调 HOX 基因靶向急性白血病中的 Menin
- 批准号:
10655162 - 财政年份:2023
- 资助金额:
$ 10.41万 - 项目类别:
Determining Sox10-mediated plasticity in irradiated salivary gland cells
确定受辐射唾液腺细胞中 Sox10 介导的可塑性
- 批准号:
10606665 - 财政年份:2023
- 资助金额:
$ 10.41万 - 项目类别: