CSR: Small: Learning and Management in Tiered Memory Systems
CSR:小:分层内存系统中的学习和管理
基本信息
- 批准号:2323100
- 负责人:
- 金额:$ 51.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2026-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Tiered memory systems are important for companies and organizations that need to manage vast amounts of data while keeping costs under control. They help to improve performance and efficiency by reducing the time it takes to access data, and also reduce the overall cost of computing systems by providing a more cost-effective solution for storing large amounts of data. The research objective of this proposed project is to design new tiered memory management techniques for in-memory databases and analytic frameworks. We will explore the power of machine learning (ML) as well as its limits and overheads as a more general, adaptable solution in improving many aspects such as scanning, migration, allocation, parameter tuning, and task scheduling to optimize the performance, QoS, and resource utilization. This research will allow designing better tiered memory systems for rapidly changing workloads. The proposed comprehensive approach to applying ML to tiered memories will generate new guidelines and leave a significant impact on many areas that are dependent on processing a large amount of data. This project will share the findings with undergraduate and graduate students through computer science programs and open up career opportunities to students from underrepresented groups and first-generation college students. This project will disseminate the proposed techniques into the industry and foster technology transfer through new industrial collaborations. The developed infrastructure will be available to the research community through a web-based portal.This research makes empirical contributions to the system-ML co-design space by tackling major challenges posed by evolving large-scale memory-intensive applications. Specifically, it advances the state of knowledge regarding, (1) how to design and develop a machine learning-based dynamic memory tiering system that is designed to ensure that the right data is in the right tier at the right time?; (2) how to use expert domain knowledge for each ML design decision such that the efficiency and the overhead of the final model are manageable and useful in real systems?; (3) how to design interactive frameworks that allow the user to modify the internal resources and parameters of the tiered memory system?; (4) how to enable novices to configure tiered memory systems with respect to their workloads and data processing requirements to obtain high performance and resource utilization?; and (5) how to derive ML models to predict the future workload patterns and accordingly configure the tiered memory systems in advance for better performance?; and Thus, to design sustainable ML-based tiered memory systems, exploring the trade-off between performance, QoS, and resource utilization by using different ML models for various design decisions is very important.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
分层内存系统对于需要管理大量数据同时控制成本的公司和组织来说非常重要。 它们通过减少访问数据所需的时间来帮助提高性能和效率,并且还通过为存储大量数据提供更具成本效益的解决方案来降低计算系统的总体成本。该项目的研究目标是为内存数据库和分析框架设计新的分层内存管理技术。 我们将探索机器学习 (ML) 的力量及其局限性和开销,作为一种更通用、适应性更强的解决方案,可改进扫描、迁移、分配、参数调整和任务调度等许多方面,以优化性能、QoS、和资源利用。这项研究将允许为快速变化的工作负载设计更好的分层内存系统。所提出的将机器学习应用于分层存储器的综合方法将产生新的指导方针,并对许多依赖于处理大量数据的领域产生重大影响。该项目将通过计算机科学项目与本科生和研究生分享研究结果,并为代表性不足群体的学生和第一代大学生提供就业机会。该项目将向行业传播拟议的技术,并通过新的行业合作促进技术转让。开发的基础设施将通过基于网络的门户向研究社区提供。这项研究通过解决不断发展的大规模内存密集型应用程序带来的主要挑战,为系统机器学习协同设计领域做出了实证贡献。具体来说,它提高了以下方面的知识水平:(1)如何设计和开发基于机器学习的动态内存分层系统,该系统旨在确保正确的数据在正确的时间位于正确的层中? (2) 如何将专家领域知识用于每个机器学习设计决策,以便最终模型的效率和开销在实际系统中是可管理的和有用的? (3)如何设计允许用户修改分层存储系统的内部资源和参数的交互框架? (4)如何让新手能够根据自己的工作负载和数据处理需求配置分层内存系统以获得高性能和资源利用率? (5) 如何导出机器学习模型来预测未来的工作负载模式并相应地提前配置分层内存系统以获得更好的性能?因此,要设计可持续的基于 ML 的分层存储系统,通过使用不同的 ML 模型进行各种设计决策来探索性能、QoS 和资源利用率之间的权衡非常重要。该奖项反映了 NSF 的法定使命,并被认为是值得的通过使用基金会的智力优势和更广泛的影响审查标准进行评估来获得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Janki Bhimani其他文献
Janki Bhimani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Janki Bhimani', 18)}}的其他基金
CAREER: Towards Efficient In-storage Indexing
职业:实现高效的存储内索引
- 批准号:
2338457 - 财政年份:2024
- 资助金额:
$ 51.47万 - 项目类别:
Continuing Grant
Collaborative Research: CNS core: OAC core: Small: New Techniques for I/O Behavior Modeling and Persistent Storage Device Configuration
合作研究: CNS 核心:OAC 核心:小型:I/O 行为建模和持久存储设备配置新技术
- 批准号:
2008324 - 财政年份:2020
- 资助金额:
$ 51.47万 - 项目类别:
Standard Grant
相似国自然基金
基于自编码深度学习的空心涡轮叶盘高维小失效可靠性设计优化研究
- 批准号:12302156
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于无监督深度学习的复材小尺寸缺陷热成像表征方法研究
- 批准号:62301507
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于深度学习的小样本侧扫声纳小目标探测
- 批准号:42374050
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
基于图表示深度学习的全新小分子先导化合物筛选方法研究
- 批准号:62372375
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于多时序多模态分子影像Delta深度融合学习预测非小细胞肺癌免疫治疗疗效的研究
- 批准号:82371994
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CSR: Small: Cross-layer learning-based Energy-Efficient and Resilient NoC design for Multicore Systems
协作研究:CSR:小型:基于跨层学习的多核系统节能和弹性 NoC 设计
- 批准号:
2321225 - 财政年份:2023
- 资助金额:
$ 51.47万 - 项目类别:
Standard Grant
Collaborative Research: CSR: Small: Cross-layer learning-based Energy-Efficient and Resilient NoC design for Multicore Systems
协作研究:CSR:小型:基于跨层学习的多核系统节能和弹性 NoC 设计
- 批准号:
2321224 - 财政年份:2023
- 资助金额:
$ 51.47万 - 项目类别:
Standard Grant
Collaborative Research: CSR: Small: Expediting Continual Online Learning on Edge Platforms through Software-Hardware Co-designs
协作研究:企业社会责任:小型:通过软硬件协同设计加快边缘平台上的持续在线学习
- 批准号:
2312158 - 财政年份:2023
- 资助金额:
$ 51.47万 - 项目类别:
Standard Grant
Collaborative Research: CSR: Small: Expediting Continual Online Learning on Edge Platforms through Software-Hardware Co-designs
协作研究:企业社会责任:小型:通过软硬件协同设计加快边缘平台上的持续在线学习
- 批准号:
2312157 - 财政年份:2023
- 资助金额:
$ 51.47万 - 项目类别:
Standard Grant
CSR: Small: Collaborative Research: Decentralized Real-Time Machine Learning Systems on Near-User Edge Devices
CSR:小型:协作研究:近用户边缘设备上的分散式实时机器学习系统
- 批准号:
2104416 - 财政年份:2020
- 资助金额:
$ 51.47万 - 项目类别:
Standard Grant