Enhancing cellulase activity through single-molecule imaging and protein engineering as a testbed for understanding and improving enzymatic deconstruction of insoluble substrates

通过单分子成像和蛋白质工程增强纤维素酶活性,作为理解和改进不溶性底物酶解构的测试平台

基本信息

  • 批准号:
    2301377
  • 负责人:
  • 金额:
    $ 63万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-04-15 至 2026-03-31
  • 项目状态:
    未结题

项目摘要

Plant-derived cellulose is the most abundant biopolymer on Earth. Cellulose is used to make paper, clothing, and building materials. It is composed of chains of glucose molecules. Cellulases are enzymes that cut these chains into their sugar building blocks. One approach for reducing our reliance on fossil fuels is to digest abundant, non-food plant materials like switchgrass and discarded corn stalks into sugar molecules. These can be fermented into renewable biofuels. The objective of this project is to use cutting-edge light microscopy to better understand how cellulases work. The knowledge generated would be used to design and test enzymes that may be more efficient, lowering the cost and increasing the availability of renewable energy. In parallel with research, educational materials to expose plant biology students to single-molecule biophysics and biophysics students to plant biology will be developed and delivered. To strengthen and increase the diversity of the bioeconomy workforce, students from underrepresented populations will be actively recruited to participate in the research project.The ability of cellulases to break down plant cell walls is hindered by the crystallinity of cellulose. The presence of other polymers such as lignin and xylans are thought to coat cellulose and thus block access by cellulase enzymes. This project will combine single-molecule fluorescence tracking, computational modeling, and protein engineering to investigate cellulase mechanisms. The proposed experiments build on ongoing work in which the investigators constructed a custom multimodal microscope and used it to track cellulases moving along cellulose with nanometer-scale precision. The work is divided into three Aims that explore specific aspects of cellulase activity. The goal of Aim 1 is to uncover the key principles that regulate substrate binding and threading of the cellulose polymer strand into the catalytic tunnel of the cellulase enzyme to initiate cellulose deconstruction. The goal of Aim 2 is to uncover how the substrate affinity and turnover rate of cellulases are tuned to maximize the enzyme’s catalytic activity while minimizing product inhibition and premature substrate release. The goal of Aim 3 is to identify mechanisms by which cellulases navigate complex mixtures of biopolymers, while achieving specific digestion of their cellulase substrate, avoiding off-target binding, and overcoming roadblocks imposed by cell wall complexity that hamper cellulose degradation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
植物性的纤维素是最丰富的生物聚合物。诸如开关的材料和将玉米茎放入糖分子中。这是可再生能源的效率。在纤维素中,纤维素的纤维素是纤维素的结晶性,例如木质素和xylans的存在。蛋白质工程机制1是要揭示纤维素聚合物链的底物结合到纤维素酶的催化性调节中。同时,通过纤维素酶的复杂混合物来最大程度地减少生物聚合物的复杂混合物,同时实现了其细胞酶底物的特定消化,并克服了由于复杂性而刺激的障碍,以阻碍纤维素降解利用基金会的知识分子和更广泛的影响审查标准。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Xylan inhibition of cellulase binding and processivity observed at single-molecule resolution
  • DOI:
    10.1039/d4su00006d
  • 发表时间:
    2024-04-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zexer,Nerya;Paradiso,Alec;Anderson,Charles T.
  • 通讯作者:
    Anderson,Charles T.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

William Hancock其他文献

Multiplexed targeted resequencing identifies coding and regulatory variation underlying phenotypic extremes of HDL-cholesterol in humans
多重靶向重测序识别人类高密度脂蛋白胆固醇表型极端的编码和调控变异
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sumeet A. Khetarpal;P. Babb;Wei Zhao;William Hancock;Christopher D. Brown;D. Rader;B. Voight
  • 通讯作者:
    B. Voight
Collaborating to Overcome the Barriers to Implementing Planetary Health Education for Medical Students: The International Medical Education Collaboration on Climate and Sustainability (IMECCS)
合作克服对医学生实施行星健康教育的障碍:气候与可持续性国际医学教育合作组织 (IMECCS)
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    James H.J. Bevan;Kevin Ardon Casco;Nicolas Contento;Aditi Gadre;William Hancock;Chloé Jammes;Valentina Sedlacek;Perry Sheffield
  • 通讯作者:
    Perry Sheffield
若年肥満者における尿中カルボニル物質による血圧上昇の予測
年轻肥胖者尿液中羰基物质导致血压升高的预测
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Garry L. Corthals;Catherine E. Costello;Eric W. Deutsch;Bruno Domon;William Hancock;Fuchu He;Denis Hochstrasser;Gyorgy Marko-Varga;Ghasem Hosseini Salekdeh;Salvatore Sechi;Michael Snyder;Sudhir Srivastava;Mathias Uhlen;Cathy H. Hu;Tadashi Y;佐藤恵美子
  • 通讯作者:
    佐藤恵美子
Towards Deception Detection in a Language-Driven Game
语言驱动游戏中的欺骗检测
  • DOI:
    10.1007/978-3-319-94649-8_3
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    William Hancock;Michael W. Floyd;M. Molineaux;D. Aha
  • 通讯作者:
    D. Aha

William Hancock的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('William Hancock', 18)}}的其他基金

EAPSI: Learning Semantic Decomposition in Support of Commonsense Reasoning
EAPSI:学习语义分解以支持常识推理
  • 批准号:
    1713952
  • 财政年份:
    2017
  • 资助金额:
    $ 63万
  • 项目类别:
    Fellowship Award
Biophotonics: Molecular Motor Biophotonics
生物光子学:分子马达生物光子学
  • 批准号:
    0323024
  • 财政年份:
    2003
  • 资助金额:
    $ 63万
  • 项目类别:
    Standard Grant
NER: Oligonucleotide-Directed Alignment of Cytoskeletal Filaments for Nanoscale Assembly
NER:用于纳米级组装的细胞骨架丝的寡核苷酸定向排列
  • 批准号:
    0209687
  • 财政年份:
    2002
  • 资助金额:
    $ 63万
  • 项目类别:
    Standard Grant

相似国自然基金

里氏木霉转录因子TrNf1负反馈调控饲用纤维素酶高效表达的分子机制
  • 批准号:
    32302785
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
羧化木质素共价固定纤维素酶的调控及其响应回收
  • 批准号:
    22378150
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
槐糖脂增效木质纤维素酶解的机理研究
  • 批准号:
    22308031
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
重构里氏木霉纤维素酶系促进人造淀粉的生物合成
  • 批准号:
    22378033
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
木质素-纤维素酶相互作用的分子机制与调控途径
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目

相似海外基金

Ultra-sensitive assay of cellulase activity using nanofibrous cellulose
使用纳米纤维纤维素超灵敏测定纤维素酶活性
  • 批准号:
    25850127
  • 财政年份:
    2013
  • 资助金额:
    $ 63万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
ISOLATION AND CHARACTERIZATION OF EXTREMOZYMES FROM ALKALINE LAKES IN NEBRASKA
内布拉斯加州碱性湖泊中极端酶的分离和表征
  • 批准号:
    8360008
  • 财政年份:
    2011
  • 资助金额:
    $ 63万
  • 项目类别:
ISOLATION AND CHARACTERIZATION OF EXTREMOZYMES FROM ALKALINE LAKES IN NEBRASKA
内布拉斯加州碱性湖泊中极端酶的分离和表征
  • 批准号:
    8167495
  • 财政年份:
    2010
  • 资助金额:
    $ 63万
  • 项目类别:
Cellulase activity assessment
纤维素酶活性评估
  • 批准号:
    382677-2009
  • 财政年份:
    2009
  • 资助金额:
    $ 63万
  • 项目类别:
    University Undergraduate Student Research Awards
Evolutionary molecular engineering and structure-activity relationship in cellulase condensation reaction.
纤维素酶缩合反应中的进化分子工程和构效关系。
  • 批准号:
    20580107
  • 财政年份:
    2008
  • 资助金额:
    $ 63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了