Collaborative Research: Thermal Transport via Four-Phonon and Exciton-Phonon Interactions in Layered Electronic and Optoelectronic Materials
合作研究:层状电子和光电材料中四声子和激子-声子相互作用的热传输
基本信息
- 批准号:2321301
- 负责人:
- 金额:$ 29.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Semiconductor research and development over the past several decades have enabled widespread use of electronic and optoelectronic devices in society. Among the challenges that the semiconductor industry is facing, it has become increasingly difficult to remove the large density of heat generation and prevent overheating of silicon microchips. As one of the approaches to overcoming this challenge, atomic layered materials are now being actively investigated as next-generation electronic and optoelectronic materials due to their potentially superior electric, optical, and thermal properties compared to those of silicon. Compared to the silicon properties that have been extensively investigated, many properties of these emerging materials have remained to be understood. Heat can be transported by atomic vibration waves in these layered materials and other solids. It is currently unclear how the highly nonlinear interatomic springs influence the heat transfer ability of the atomic vibration in these layered materials. In addition, light illumination on semiconductors can excite electrons to high-energy states that are referred as excitons. There is currently a knowledge gap in the heat-carrying ability of these excitons and their influence on the atomic vibration waves. This project aims to address the outstanding questions on these two specific fundamentals that control the heat transport properties in these layered materials. The obtained knowledge will be used to build new simulation tools, enhance online courses and classroom instruction, and develop hands-on education modules to aid the recruitment and training of a diverse population of next-generation workforce in thermal engineering. The goal of this project is to advance the fundamental understanding of the effects of four-phonon and exciton-phonon interactions in thermal transport and energy dissipation in emerging layered electronic and optoelectronic materials. Specifically, four outstanding questions that are essential for the operation of emerging layered electronic and optoelectronic materials will be addressed: (1) How four-phonon interactions impact the thickness dependence of the lattice thermal conductivity in multi-layered graphene and carbon nanotubes (CNTs); (2) Whether four-phonon interactions reduce or broaden the temperature window of hydrodynamic phonon transport in graphitic materials; (3) Whether exciton diffusion can provide another channel for heat transport from hot spots in layered optoelectronic and electronic materials; and (4) How exciton-phonon coupling influences the lattice thermal transport and local non-equilibrium in emerging TMD devices. These questions will be addressed by new computational models that integrate frontier first-principles theory of exciton-phonon and four-phonon coupling, and unique nanoscale thermal metrology tools including the multi-probe thermal transport and photo-heat current measurements. The obtained fundamental understanding of four-phonon and exciton-phonon interactions helps to establish the foundation for modeling and controlling energy dissipation and thermal transport in emerging layered electronic and optoelectronic devices.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
过去几十年的半导体研究和发展使得电子和光电设备在社会中得到广泛使用。半导体行业面临的挑战中,消除大密度发热并防止硅微芯片过热变得越来越困难。作为克服这一挑战的方法之一,原子层状材料目前正在作为下一代电子和光电材料进行积极研究,因为与硅相比,它们具有潜在的优越的电学、光学和热性能。与已被广泛研究的硅特性相比,这些新兴材料的许多特性仍有待了解。热量可以通过原子振动波在这些层状材料和其他固体中传输。目前尚不清楚高度非线性原子间弹簧如何影响这些层状材料中原子振动的传热能力。此外,半导体上的光照射可以将电子激发到被称为激子的高能态。目前,对于这些激子的载热能力及其对原子振动波的影响还存在知识空白。该项目旨在解决控制这些层状材料热传输特性的这两个具体基础的突出问题。获得的知识将用于构建新的模拟工具,增强在线课程和课堂教学,并开发实践教育模块,以帮助招聘和培训热力工程领域的下一代多元化劳动力。 该项目的目标是增进对新兴层状电子和光电材料中四声子和激子-声子相互作用对热传输和能量耗散影响的基本理解。具体来说,将解决新兴层状电子和光电材料的运行所必需的四个突出问题:(1)四声子相互作用如何影响多层石墨烯和碳纳米管(CNT)中晶格热导率的厚度依赖性; (2)四声子相互作用是否会减少或扩大石墨材料中流体动力声子输运的温度窗口; (3)激子扩散是否可以为层状光电和电子材料中热点的热传输提供另一个通道; (4) 激子-声子耦合如何影响新兴 TMD 器件中的晶格热传输和局部非平衡。这些问题将通过新的计算模型来解决,该模型集成了激子-声子和四声子耦合的前沿第一原理理论,以及独特的纳米级热计量工具,包括多探针热传输和光热电流测量。对四声子和激子-声子相互作用的基本理解有助于为新兴层状电子和光电器件中的能量耗散和热传输建模和控制奠定基础。该奖项反映了 NSF 的法定使命,并通过评估认为值得支持利用基金会的智力优势和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiulin Ruan其他文献
Four phonon-dominated near-field radiation in weakly anharmonic polar materials
- DOI:
- 发表时间:
2023-09-29 - 期刊:
- 影响因子:0
- 作者:
Dudong Feng;Xiaolong Yang;Zherui Han;Xiulin Ruan - 通讯作者:
Xiulin Ruan
Glass‐Like Through‐Plane Thermal Conductivity Induced by Oxygen Vacancies in Nanoscale Epitaxial La0.5Sr0.5CoO3−δ
玻璃 — 类透 — 纳米级外延 La0.5Sr0.5CoO3 中氧空位引起的平面热导率 —
- DOI:
10.20933/100001143 - 发表时间:
2017 - 期刊:
- 影响因子:19
- 作者:
Xuewang Wu;Jeff Walter;Tianli Feng;Jie Zhu;Hong Zheng;John F. Mitchell;Neven Biskup;Maria Varela;Xiulin Ruan;Chris Leighton;Xiaojia Wang - 通讯作者:
Xiaojia Wang
Enhancing photo-induced ultrafast charge transfer across heterojunctions of CdS and laser-sintered TiO2nanocrystals
- DOI:
10.1039/c4cp01298d - 发表时间:
2014-04 - 期刊:
- 影响因子:3.3
- 作者:
Bryan T. Spann;S. Venkataprasad Bhat;Qiong Nian;Kelly M. Rickey;Gary J. Cheng;Xiulin Ruan;Xianfan Xu - 通讯作者:
Xianfan Xu
Sampling-accelerated First-principles Prediction of Phonon Scattering Rates for Converged Thermal Conductivity and Radiative Properties
收敛热导率和辐射特性的声子散射率的采样加速第一原理预测
- DOI:
10.1051/e3sconf/202338503017 - 发表时间:
2023-11-21 - 期刊:
- 影响因子:0
- 作者:
Ziqi Guo;Zherui Han;Dudong Feng;Guang Lin;Xiulin Ruan - 通讯作者:
Xiulin Ruan
Machine learning-based design optimization of aperiodic multilayer coatings for enhanced solar reflection
基于机器学习的非周期性多层涂层设计优化,以增强太阳光反射
- DOI:
10.1016/j.ijheatmasstransfer.2024.125303 - 发表时间:
2024-06-01 - 期刊:
- 影响因子:5.2
- 作者:
Krutarth Khot;P. R. Chowdhury;Xiulin Ruan - 通讯作者:
Xiulin Ruan
Xiulin Ruan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiulin Ruan', 18)}}的其他基金
Elements: FourPhonon: A Computational Tool for Higher-Order Phonon Anharmonicity and Thermal Properties
元素:FourPhonon:高阶声子非谐性和热性质的计算工具
- 批准号:
2311848 - 财政年份:2023
- 资助金额:
$ 29.39万 - 项目类别:
Standard Grant
CDS&E: First Principles Prediction of Thermal Radiative Properties of Dielectric Materials
CDS
- 批准号:
2102645 - 财政年份:2021
- 资助金额:
$ 29.39万 - 项目类别:
Continuing Grant
CDS&E: First Principles Prediction of Thermal Radiative Properties of Dielectric Materials
CDS
- 批准号:
2102645 - 财政年份:2021
- 资助金额:
$ 29.39万 - 项目类别:
Continuing Grant
Collaborative Research: High-order Phonon Scattering and Highly Nonequilibrium Carrier Transport in Two-dimensional Electronic and Optoelectronic Materials
合作研究:二维电子光电材料中的高阶声子散射和高度非平衡载流子输运
- 批准号:
2015946 - 财政年份:2020
- 资助金额:
$ 29.39万 - 项目类别:
Standard Grant
Collaborative Research: High-order Phonon Scattering and Highly Nonequilibrium Carrier Transport in Two-dimensional Electronic and Optoelectronic Materials
合作研究:二维电子光电材料中的高阶声子散射和高度非平衡载流子输运
- 批准号:
2015946 - 财政年份:2020
- 资助金额:
$ 29.39万 - 项目类别:
Standard Grant
CAREER: First Principles-Enabled Prediction of Thermal Conductivity and Radiative Properties of Solids
职业:利用第一原理预测固体的热导率和辐射特性
- 批准号:
1150948 - 财政年份:2012
- 资助金额:
$ 29.39万 - 项目类别:
Standard Grant
Predictive Design of Nanocrystal Photovoltaic Materials Based on the Phonon Bottleneck Effect
基于声子瓶颈效应的纳米晶光伏材料预测设计
- 批准号:
0933559 - 财政年份:2009
- 资助金额:
$ 29.39万 - 项目类别:
Standard Grant
相似国自然基金
二仙汤影响肾上腺皮质-髓质激素分泌及调控下丘脑温度感受器以缓解“天癸竭”潮热的研究
- 批准号:82374307
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
自蔓延反应产热辅助的金属箔片微电阻焊连接机理与工艺调控研究
- 批准号:52375357
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
cGAS-STING信号通路调控树突状细胞介导的银屑病血热证发病机制及凉血潜阳法干预研究
- 批准号:82374445
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于T形扫描热探针技术的微观运动界面非平衡能量传递过程研究
- 批准号:52376159
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
肠道微生物通过胆汁酸诱导宿主脂肪产热的分子机制研究
- 批准号:32302709
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: NSFDEB-NERC: Warming's silver lining? Thermal compensation at multiple levels of organization may promote stream ecosystem stability in response to drought
合作研究:NSFDEB-NERC:变暖的一线希望?
- 批准号:
2312707 - 财政年份:2024
- 资助金额:
$ 29.39万 - 项目类别:
Standard Grant
Collaborative Research: Manipulating the Thermal Properties of Two-Dimensional Materials Through Interface Structure and Chemistry
合作研究:通过界面结构和化学控制二维材料的热性能
- 批准号:
2400352 - 财政年份:2024
- 资助金额:
$ 29.39万 - 项目类别:
Standard Grant
Collaborative Research: Manipulating the Thermal Properties of Two-Dimensional Materials Through Interface Structure and Chemistry
合作研究:通过界面结构和化学控制二维材料的热性能
- 批准号:
2400353 - 财政年份:2024
- 资助金额:
$ 29.39万 - 项目类别:
Standard Grant
Collaborative Research: NSFDEB-NERC: Warming's silver lining? Thermal compensation at multiple levels of organization may promote stream ecosystem stability in response to drought
合作研究:NSFDEB-NERC:变暖的一线希望?
- 批准号:
2312706 - 财政年份:2024
- 资助金额:
$ 29.39万 - 项目类别:
Standard Grant
Collaborative Research: Studying Carbon Injection and the Silicate Weathering Feedback over the Paleocene Eocene Thermal Maximum Using Ca Isotopes and Modeling
合作研究:利用 Ca 同位素和模拟研究古新世始新世热最大值期间的碳注入和硅酸盐风化反馈
- 批准号:
2233961 - 财政年份:2023
- 资助金额:
$ 29.39万 - 项目类别:
Standard Grant