Predictive Design of Nanocrystal Photovoltaic Materials Based on the Phonon Bottleneck Effect
基于声子瓶颈效应的纳米晶光伏材料预测设计
基本信息
- 批准号:0933559
- 负责人:
- 金额:$ 32.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-15 至 2012-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
0933559RuanSummaryThe objective of the proposed research is to understand and reduce thermalization loss in solar cell materials by using the phonon bottleneck effect in nanocrystals, and therefore to increase the energy conversion efficiency. Due to the broadband of solar spectrum, photons with energy higher than the bandgap can generate hot electrons at a temperature much higher than the lattice. Normally these hot electrons rapidly pass their excess potential energy to the lattice through electron-phonon scattering processes, losing their excess energy to heat and causing lower solar energy conversion efficiency. In nanocrystals the continuous bands become discrete energy levels and the spacing can be engineered to be larger than the energy of a single phonon, making the electron relaxation through phonons a slow process. This "phonon bottleneck effect" can lead to significantly reduced electron-phonon relaxation rates and enhanced solar cell efficiency. However, the current understanding of this phenomenon is very limited - the experimental data are often inconsistent, and the theoretical models are only qualitative, preventing the predictive design of optimum nanocrystals that maximize the phonon bottleneck effect. Intellectual Merits: In this study, the PIs will integrate theory, simulation, synthesis, and characterizations to minimize the hot electron relaxation in nanocrystal solar materials. A non-adiabatic molecular dynamics method will be developed to simulate the phonon-assisted hot electron relaxation rates, and will be used to determine the optimum size, shape, and surface terminations that give the slowest hot electron relaxation. Based on the numerical results the PIs anticipate to gain a profound understanding of how atomic structures of nanomaterials affect their electron-phonon coupling. The computed nanostructures with optimum electron-phonon coupling will be synthesized with precise size and shape control. These materials will then be characterized using femtosecond lasers for the slowed relaxation rates. Solar cells based on these optimized quantum dots will be fabricated and tested and their efficiencies will be compared with their bulk counterpart. The combined computation, synthesis, and characterization will allow optimization of the nanocrystals to achieve the phonon bottleneck effect and higher solar cell efficiency. Broader impact: The research addresses one of the grand energy challenges for the nation. The project is part of the PIs' efforts to include fundamental physics into an integrated research-education effort in energy transport and conversion. The new knowledge acquired from this project will significantly enrich the courses taught by the PIs. The PIs have been actively recruiting underrepresented groups in their research programs. The team will extensively engage in energy education and outreach activities for K-12 and local community through workshops, seminars, and demonstration projects. The PIs will also engage in the outreach activities with the heat transfer and nanotechnology research communities via nanoHUB and thermalHUB
0933559Ruan摘要该研究的目的是通过利用纳米晶体中的声子瓶颈效应来了解和减少太阳能电池材料的热化损失,从而提高能量转换效率。由于太阳光谱的宽带,能量高于带隙的光子可以在远高于晶格的温度下产生热电子。通常,这些热电子通过电子声子散射过程快速将多余的势能传递到晶格,将多余的能量转化为热量,导致太阳能转换效率降低。在纳米晶体中,连续的能带变成离散的能级,并且间距可以设计为大于单个声子的能量,使得电子通过声子弛豫成为一个缓慢的过程。这种“声子瓶颈效应”可以显着降低电子声子弛豫率并提高太阳能电池效率。然而,目前对这种现象的理解非常有限——实验数据往往不一致,理论模型只是定性的,阻碍了最大化声子瓶颈效应的最佳纳米晶体的预测设计。智力优点:在这项研究中,PI 将整合理论、模拟、合成和表征,以最大限度地减少纳米晶体太阳能材料中的热电子弛豫。将开发一种非绝热分子动力学方法来模拟声子辅助的热电子弛豫速率,并将用于确定给出最慢热电子弛豫的最佳尺寸、形状和表面终端。根据数值结果,PI 预计能够深入了解纳米材料的原子结构如何影响其电子-声子耦合。具有最佳电子声子耦合的计算纳米结构将通过精确的尺寸和形状控制来合成。然后,将使用飞秒激光来表征这些材料的减慢弛豫速率。基于这些优化量子点的太阳能电池将被制造和测试,其效率将与它们的块状对应物进行比较。综合计算、合成和表征将允许优化纳米晶体,以实现声子瓶颈效应和更高的太阳能电池效率。更广泛的影响:该研究解决了国家面临的重大能源挑战之一。该项目是 PI 努力将基础物理学纳入能源传输和转换领域的综合研究教育工作的一部分。从该项目中获得的新知识将极大地丰富 PI 教授的课程。 PI 一直在其研究项目中积极招募代表性不足的群体。该团队将通过讲习班、研讨会和示范项目广泛参与 K-12 和当地社区的能源教育和外展活动。 PI 还将通过 nanoHUB 和 ThermalHUB 参与传热和纳米技术研究界的外展活动
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiulin Ruan其他文献
Four phonon-dominated near-field radiation in weakly anharmonic polar materials
- DOI:
- 发表时间:
2023-09-29 - 期刊:
- 影响因子:0
- 作者:
Dudong Feng;Xiaolong Yang;Zherui Han;Xiulin Ruan - 通讯作者:
Xiulin Ruan
Glass‐Like Through‐Plane Thermal Conductivity Induced by Oxygen Vacancies in Nanoscale Epitaxial La0.5Sr0.5CoO3−δ
玻璃 — 类透 — 纳米级外延 La0.5Sr0.5CoO3 中氧空位引起的平面热导率 —
- DOI:
10.20933/100001143 - 发表时间:
2017 - 期刊:
- 影响因子:19
- 作者:
Xuewang Wu;Jeff Walter;Tianli Feng;Jie Zhu;Hong Zheng;John F. Mitchell;Neven Biskup;Maria Varela;Xiulin Ruan;Chris Leighton;Xiaojia Wang - 通讯作者:
Xiaojia Wang
Enhancing photo-induced ultrafast charge transfer across heterojunctions of CdS and laser-sintered TiO2nanocrystals
- DOI:
10.1039/c4cp01298d - 发表时间:
2014-04 - 期刊:
- 影响因子:3.3
- 作者:
Bryan T. Spann;S. Venkataprasad Bhat;Qiong Nian;Kelly M. Rickey;Gary J. Cheng;Xiulin Ruan;Xianfan Xu - 通讯作者:
Xianfan Xu
Sampling-accelerated First-principles Prediction of Phonon Scattering Rates for Converged Thermal Conductivity and Radiative Properties
收敛热导率和辐射特性的声子散射率的采样加速第一原理预测
- DOI:
10.1051/e3sconf/202338503017 - 发表时间:
2023-11-21 - 期刊:
- 影响因子:0
- 作者:
Ziqi Guo;Zherui Han;Dudong Feng;Guang Lin;Xiulin Ruan - 通讯作者:
Xiulin Ruan
Machine learning-based design optimization of aperiodic multilayer coatings for enhanced solar reflection
基于机器学习的非周期性多层涂层设计优化,以增强太阳光反射
- DOI:
10.1016/j.ijheatmasstransfer.2024.125303 - 发表时间:
2024-06-01 - 期刊:
- 影响因子:5.2
- 作者:
Krutarth Khot;P. R. Chowdhury;Xiulin Ruan - 通讯作者:
Xiulin Ruan
Xiulin Ruan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiulin Ruan', 18)}}的其他基金
Collaborative Research: Thermal Transport via Four-Phonon and Exciton-Phonon Interactions in Layered Electronic and Optoelectronic Materials
合作研究:层状电子和光电材料中四声子和激子-声子相互作用的热传输
- 批准号:
2321301 - 财政年份:2023
- 资助金额:
$ 32.47万 - 项目类别:
Standard Grant
Elements: FourPhonon: A Computational Tool for Higher-Order Phonon Anharmonicity and Thermal Properties
元素:FourPhonon:高阶声子非谐性和热性质的计算工具
- 批准号:
2311848 - 财政年份:2023
- 资助金额:
$ 32.47万 - 项目类别:
Standard Grant
CDS&E: First Principles Prediction of Thermal Radiative Properties of Dielectric Materials
CDS
- 批准号:
2102645 - 财政年份:2021
- 资助金额:
$ 32.47万 - 项目类别:
Continuing Grant
CDS&E: First Principles Prediction of Thermal Radiative Properties of Dielectric Materials
CDS
- 批准号:
2102645 - 财政年份:2021
- 资助金额:
$ 32.47万 - 项目类别:
Continuing Grant
Collaborative Research: High-order Phonon Scattering and Highly Nonequilibrium Carrier Transport in Two-dimensional Electronic and Optoelectronic Materials
合作研究:二维电子光电材料中的高阶声子散射和高度非平衡载流子输运
- 批准号:
2015946 - 财政年份:2020
- 资助金额:
$ 32.47万 - 项目类别:
Standard Grant
Collaborative Research: High-order Phonon Scattering and Highly Nonequilibrium Carrier Transport in Two-dimensional Electronic and Optoelectronic Materials
合作研究:二维电子光电材料中的高阶声子散射和高度非平衡载流子输运
- 批准号:
2015946 - 财政年份:2020
- 资助金额:
$ 32.47万 - 项目类别:
Standard Grant
CAREER: First Principles-Enabled Prediction of Thermal Conductivity and Radiative Properties of Solids
职业:利用第一原理预测固体的热导率和辐射特性
- 批准号:
1150948 - 财政年份:2012
- 资助金额:
$ 32.47万 - 项目类别:
Standard Grant
相似国自然基金
锑离子掺杂空位有序双钙钛矿纳米晶的设计合成与发光特性研究
- 批准号:12304458
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
纳米共晶高熵合金多元界面的优化设计及强韧化机理研究
- 批准号:12302130
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
纤维素纳米晶复合光热膜限域结构设计及其协同水-电联产性能研究
- 批准号:22368019
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
生物磁珠用非晶磁性纳米材料的设计、制备及应用
- 批准号:52371179
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
低热敏、高绝缘纳米晶PTC复合聚合物界面设计及调控机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Linking the physical and chemical characteristics of Qdots to their toxicity
将 Qdot 的物理和化学特性与其毒性联系起来
- 批准号:
8258515 - 财政年份:2010
- 资助金额:
$ 32.47万 - 项目类别:
Linking the physical and chemical characteristics of Qdots to their toxicity
将 Qdot 的物理和化学特性与其毒性联系起来
- 批准号:
8464705 - 财政年份:2010
- 资助金额:
$ 32.47万 - 项目类别:
Linking the physical and chemical characteristics of Qdots to their toxicity
将 Qdot 的物理和化学特性与其毒性联系起来
- 批准号:
8675245 - 财政年份:2010
- 资助金额:
$ 32.47万 - 项目类别:
Linking the physical and chemical characteristics of Qdots to their toxicity
将 Qdot 的物理和化学特性与其毒性联系起来
- 批准号:
8332607 - 财政年份:2010
- 资助金额:
$ 32.47万 - 项目类别:
Linking the physical and chemical characteristics of Qdots to their toxicity
将 Qdot 的物理和化学特性与其毒性联系起来
- 批准号:
8274474 - 财政年份:2010
- 资助金额:
$ 32.47万 - 项目类别: