CDS&E: First Principles Prediction of Thermal Radiative Properties of Dielectric Materials
CDS
基本信息
- 批准号:2102645
- 负责人:
- 金额:$ 43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-15 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project is funded by the Condensed-Matter-and-Materials-Theory program in the Division of Materials Research and by the programs in Computational and Data-Enabled Science and Engineering and Thermal Transport Processes in the Division of Chemical, Bioengineering, Environmental, and Transport Systems.Non-technical summaryThermal radiation plays a key role in a broad set of energy and thermal-management applications, including spacecraft, solar cells, and passive radiative cooling. These applications often require distinct selective radiative properties: high absorption of sunlight is needed for solar cells, while low absorption of sunlight and high emission of infrared light in the window of atmospheric transparency are desired for radiative cooling. By reflecting sunlight while radiating infrared light to space, radiative-cooling paints have been shown to cool surfaces to below the ambient temperature without any energy expenditure. Screening and designing such materials call for an understanding of how thermal radiative properties depend on the atomic structures of materials. However, methods and software tools for this purpose are generally lacking, and empirical trial-and-error approaches are still the mainstream. Therefore, the objectives of this project are to enhance theoretical and simulation methodologies that can predict thermal radiative properties of materials from their atomic structures and subsequently to develop and deploy an open-source code that will help other researchers model their own radiative materials. Moreover, the PI will use these tools to understand the atomistic origins of ultra-efficient radiative cooling in particle-matrix nanocomposites and employ machine learning to pursue high-throughput screening of a large number of materials including oxides, carbonates, and sulfates, aiming to discover better radiative-cooling materials. The work will lead to energy savings with significant promise for combating climate change. In parallel, this project will incorporate education and outreach efforts. Besides expanding the graduate and undergraduate curriculum on radiative materials, it will provide technologically attractive topics to broaden the participation from women and underrepresented groups in engineering and science.Technical summaryThe goals of this research are to develop first-principles methods for calculating thermal radiative properties, deploy an open-source code, and enable high-throughput screening of particle-matrix radiative cooling paints. Tailored thermal radiative properties are demanded in a broad set of energy and thermal-management applications. However, no open-source codes are available to predict infrared radiative properties of dielectric materials from first principles, hindering the understanding of radiative properties and the design of new radiative materials from atomic structures. Meanwhile, although encouraging progress has been made in first-principles prediction of radiative properties, additional important phonon-scattering processes as well as phonon renormalization need to be included. Such tools will be extremely beneficial for applications such as selecting radiative-cooling materials, which are currently studied on an empirical trial-and-error basis. In this project, the PI will address these urgent research needs via computation and data-enabled approaches. There are three specific research tasks: (1) enhancing the capabilities of first-principles prediction of thermal radiative properties beyond four-phonon scattering, by incorporating phonon renormalization, phonon-electron scattering, and phonon scattering with defects, impurities, and boundaries; (2) developing and deploying an open-source code for first-principles calculations of thermal radiative properties; and (3) coupling first-principles predictions, Monte-Carlo simulations, and machine learning to enable high-throughput screening of dielectric particle-polymer-matrix radiative-cooling paints. The project is expected to achieve unprecedented accuracy in predicting thermal radiative properties of dielectric materials from first principles and enabling researchers to screen or design thermal radiative materials via an open-source code. It has the potential to change the current trial-and-error practice not only for radiative-cooling nanocomposites but also for many other important radiative materials such as thermal barrier coatings, thermophotovoltaic emitters, and coatings for space missions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目由材料研究部的凝聚态物质和材料理论项目以及化学、生物工程、环境和热学部的计算和数据支持的科学与工程以及热传输过程项目资助。传输系统。非技术摘要热辐射在广泛的能源和热管理应用中发挥着关键作用,包括航天器、太阳能电池和被动辐射冷却。 这些应用通常需要独特的选择性辐射特性:太阳能电池需要对太阳光的高吸收,而辐射冷却则需要对太阳光的低吸收和大气透明窗口中红外光的高发射。 通过反射太阳光同时向太空辐射红外光,辐射冷却涂料已被证明可以将表面冷却至环境温度以下,而无需任何能量消耗。 筛选和设计此类材料需要了解热辐射特性如何取决于材料的原子结构。 然而,这方面的方法和软件工具普遍缺乏,经验试错法仍然是主流。 因此,该项目的目标是增强理论和模拟方法,可以根据材料的原子结构预测材料的热辐射特性,并随后开发和部署开源代码,帮助其他研究人员模拟他们自己的辐射材料。 此外,PI 将使用这些工具来了解颗粒基体纳米复合材料中超高效辐射冷却的原子起源,并利用机器学习对包括氧化物、碳酸盐和硫酸盐在内的大量材料进行高通量筛选,旨在发现更好的辐射冷却材料。 这项工作将有助于节约能源,并为应对气候变化带来重大前景。 与此同时,该项目将纳入教育和外展工作。 除了扩大辐射材料方面的研究生和本科生课程之外,它将提供具有技术吸引力的主题,以扩大女性和代表性不足的群体在工程和科学领域的参与。技术摘要这项研究的目标是开发计算热辐射特性的第一原理方法,部署开源代码,并实现粒子基质辐射冷却涂料的高通量筛选。 广泛的能源和热管理应用需要定制的热辐射特性。 然而,目前还没有开源代码可以从第一原理预测介电材料的红外辐射特性,这阻碍了对辐射特性的理解以及从原子结构设计新型辐射材料。 与此同时,尽管在辐射特性的第一原理预测方面取得了令人鼓舞的进展,但还需要包括其他重要的声子散射过程以及声子重整化。 此类工具对于选择辐射冷却材料等应用非常有益,目前这些应用是在经验试错的基础上进行研究的。 在这个项目中,PI 将通过计算和数据支持的方法来满足这些紧迫的研究需求。 具体研究任务包括三项:(1)通过结合声子重整化、声子电子散射以及带有缺陷、杂质和边界的声子散射,增强四声子散射之外的热辐射特性的第一性原理预测能力; (2) 开发和部署用于热辐射特性第一原理计算的开源代码; (3) 将第一原理预测、蒙特卡罗模拟和机器学习结合起来,以实现介电颗粒-聚合物基体辐射冷却涂料的高通量筛选。 该项目预计将在根据第一原理预测介电材料的热辐射特性方面实现前所未有的准确性,并使研究人员能够通过开源代码筛选或设计热辐射材料。 它有可能改变当前的试错实践,不仅适用于辐射冷却纳米复合材料,也适用于许多其他重要的辐射材料,例如热障涂层、热光伏发射器和太空任务涂层。该奖项反映了 NSF 的法定使命通过使用基金会的智力优点和更广泛的影响审查标准进行评估,并被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Atmospheric Water Harvesting by Large-Scale Radiative Cooling Cellulose-Based Fabric
通过大规模辐射冷却纤维素基织物收集大气水
- DOI:10.1021/acs.nanolett.1c04143
- 发表时间:2022-04
- 期刊:
- 影响因子:10.8
- 作者:Zhang, Yun;Zhu, Wenkai;Zhang, Chi;Peoples, Joseph;Li, Xuan;Felicelli, Andrea Lorena;Shan, Xiwei;Warsinger, David M.;Borca;Ruan, Xiulin;et al
- 通讯作者:et al
Thin layer lightweight and ultrawhite hexagonal boron nitride nanoporous paints for daytime radiative cooling
用于日间辐射冷却的薄层轻质超白六方氮化硼纳米多孔涂料
- DOI:10.1016/j.xcrp.2022.101058
- 发表时间:2022-10-01
- 期刊:
- 影响因子:8.9
- 作者:Andrea Felicelli;Ioanna Katsamba;Fern;o Barrios;o;Yun Zhang;Ziqi Guo;J. Peoples;G. Chiu;X. Ruan
- 通讯作者:X. Ruan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiulin Ruan其他文献
Four phonon-dominated near-field radiation in weakly anharmonic polar materials
- DOI:
- 发表时间:
2023-09-29 - 期刊:
- 影响因子:0
- 作者:
Dudong Feng;Xiaolong Yang;Zherui Han;Xiulin Ruan - 通讯作者:
Xiulin Ruan
Glass‐Like Through‐Plane Thermal Conductivity Induced by Oxygen Vacancies in Nanoscale Epitaxial La0.5Sr0.5CoO3−δ
玻璃 — 类透 — 纳米级外延 La0.5Sr0.5CoO3 中氧空位引起的平面热导率 —
- DOI:
10.20933/100001143 - 发表时间:
2017 - 期刊:
- 影响因子:19
- 作者:
Xuewang Wu;Jeff Walter;Tianli Feng;Jie Zhu;Hong Zheng;John F. Mitchell;Neven Biskup;Maria Varela;Xiulin Ruan;Chris Leighton;Xiaojia Wang - 通讯作者:
Xiaojia Wang
Enhancing photo-induced ultrafast charge transfer across heterojunctions of CdS and laser-sintered TiO2nanocrystals
- DOI:
10.1039/c4cp01298d - 发表时间:
2014-04 - 期刊:
- 影响因子:3.3
- 作者:
Bryan T. Spann;S. Venkataprasad Bhat;Qiong Nian;Kelly M. Rickey;Gary J. Cheng;Xiulin Ruan;Xianfan Xu - 通讯作者:
Xianfan Xu
Sampling-accelerated First-principles Prediction of Phonon Scattering Rates for Converged Thermal Conductivity and Radiative Properties
收敛热导率和辐射特性的声子散射率的采样加速第一原理预测
- DOI:
10.1051/e3sconf/202338503017 - 发表时间:
2023-11-21 - 期刊:
- 影响因子:0
- 作者:
Ziqi Guo;Zherui Han;Dudong Feng;Guang Lin;Xiulin Ruan - 通讯作者:
Xiulin Ruan
Machine learning-based design optimization of aperiodic multilayer coatings for enhanced solar reflection
基于机器学习的非周期性多层涂层设计优化,以增强太阳光反射
- DOI:
10.1016/j.ijheatmasstransfer.2024.125303 - 发表时间:
2024-06-01 - 期刊:
- 影响因子:5.2
- 作者:
Krutarth Khot;P. R. Chowdhury;Xiulin Ruan - 通讯作者:
Xiulin Ruan
Xiulin Ruan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiulin Ruan', 18)}}的其他基金
Collaborative Research: Thermal Transport via Four-Phonon and Exciton-Phonon Interactions in Layered Electronic and Optoelectronic Materials
合作研究:层状电子和光电材料中四声子和激子-声子相互作用的热传输
- 批准号:
2321301 - 财政年份:2023
- 资助金额:
$ 43万 - 项目类别:
Standard Grant
Elements: FourPhonon: A Computational Tool for Higher-Order Phonon Anharmonicity and Thermal Properties
元素:FourPhonon:高阶声子非谐性和热性质的计算工具
- 批准号:
2311848 - 财政年份:2023
- 资助金额:
$ 43万 - 项目类别:
Standard Grant
Collaborative Research: High-order Phonon Scattering and Highly Nonequilibrium Carrier Transport in Two-dimensional Electronic and Optoelectronic Materials
合作研究:二维电子光电材料中的高阶声子散射和高度非平衡载流子输运
- 批准号:
2015946 - 财政年份:2020
- 资助金额:
$ 43万 - 项目类别:
Standard Grant
Collaborative Research: High-order Phonon Scattering and Highly Nonequilibrium Carrier Transport in Two-dimensional Electronic and Optoelectronic Materials
合作研究:二维电子光电材料中的高阶声子散射和高度非平衡载流子输运
- 批准号:
2015946 - 财政年份:2020
- 资助金额:
$ 43万 - 项目类别:
Standard Grant
CAREER: First Principles-Enabled Prediction of Thermal Conductivity and Radiative Properties of Solids
职业:利用第一原理预测固体的热导率和辐射特性
- 批准号:
1150948 - 财政年份:2012
- 资助金额:
$ 43万 - 项目类别:
Standard Grant
Predictive Design of Nanocrystal Photovoltaic Materials Based on the Phonon Bottleneck Effect
基于声子瓶颈效应的纳米晶光伏材料预测设计
- 批准号:
0933559 - 财政年份:2009
- 资助金额:
$ 43万 - 项目类别:
Standard Grant
相似国自然基金
基于第一性原理训练深度势研究光电催化材料中的极化子问题
- 批准号:12304216
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于第一性原理精度分子动力学的过冷水反常物理性质研究
- 批准号:12374217
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
基于第一性原理设计制备高性能钨合金的基础研究
- 批准号:52371091
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
准一维铬砷基超导材料电子关联动力学性质的第一性原理研究
- 批准号:12304175
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于第一性原理的含酚类生物再生剂热裂解逆向调控与代替老化再生机理
- 批准号:52308445
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Real-Time First-Principles Approach to Understanding Many-Body Effects on High Harmonic Generation in Solids
职业:实时第一性原理方法来理解固体高次谐波产生的多体效应
- 批准号:
2337987 - 财政年份:2024
- 资助金额:
$ 43万 - 项目类别:
Continuing Grant
Tackling the Peak Assignment Problem in X-ray Photoelectron Spectroscopy with First Principles Calculations
利用第一原理计算解决 X 射线光电子能谱中的峰分配问题
- 批准号:
EP/Y037022/1 - 财政年份:2024
- 资助金额:
$ 43万 - 项目类别:
Research Grant
BETTERXPS - Tackling the Peak Assignment Problem in X-ray Photoelectron Spectroscopy with First Principles Calculations
BETTERXPS - 通过第一原理计算解决 X 射线光电子能谱中的峰分配问题
- 批准号:
EP/Y036433/1 - 财政年份:2024
- 资助金额:
$ 43万 - 项目类别:
Research Grant
SHAIC1: Towards Scalable Human-AI Coordination from First Principles
SHAIC1:从第一原则迈向可扩展的人类与人工智能协调
- 批准号:
EP/Y028481/1 - 财政年份:2024
- 资助金额:
$ 43万 - 项目类别:
Research Grant
CAREER: First-Principles Discovery of Optically Excited States in Van der Waals Magnetic Structures
职业生涯:范德华磁结构中光激发态的第一原理发现
- 批准号:
2339995 - 财政年份:2024
- 资助金额:
$ 43万 - 项目类别:
Continuing Grant