CAREER: First Principles-Enabled Prediction of Thermal Conductivity and Radiative Properties of Solids
职业:利用第一原理预测固体的热导率和辐射特性
基本信息
- 批准号:1150948
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-03-01 至 2017-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PI: Xiulin Ruan, Purdue UniversityProposal Number: CBET-1150948The proposed effort will enable the prediction of thermal conductive and radiative properties of solids from first principles. Thermal conductivity and far-infrared thermal radiative properties of solids are critical issues in many modern and emerging applications such as thermal management, electronics, photovoltaics, and thermoelectrics. Both properties, although seemingly unrelated, are governed in the atomic scale by the dispersion relation and relaxation time of the same thermal energy carrier called phonon. To guide the design and synthesis of these materials, it is highly desirable to predict their thermal properties from first principles, i.e., from their atomic structures without the use of adjustable parameters. However, existing classical interatomic potentials are inaccurate even for standard materials such as silicon and carbon since the potentials were not intended for the purpose of thermal transport modeling. For most other solids, the classical potentials haven't been developed yet, making the prediction of their thermal transport properties impossible. Therefore, it is the objective of this proposal to formulate new methodologies that can develop accurate interatomic potentials or can completely bypass the use of classical potentials, for thermal property prediction. Toward this goal, two multiscale multiphysics methods will be developed in parallel. In the first method, first principles calculations will be used to develop accurate classical interatomic potentials that are intentionally optimized for thermal transport modeling, and the potentials will then be employed in classical MD to predict thermal conductivity. In order to bypass the challenging and tedious potential development process, the second method will introduce a new tight-binding molecular dynamics (TBMD) method to produce the trajectory of atoms, which will then be used in phonon spectral analysis to obtain spectral phonon relaxation time as well as thermal conductivity and radiative properties. The predictive power will be demonstrated first on standard materials such as silicon, and then on a range of important but complex thermoelectric and photovoltaic materials, including Bi2Te3 and GaAs bulk and nanomaterials.The intellectual merit of the proposal centers around fundamentally new prediction methods based on first principles for both thermal conductive and radiative properties. The tight binding MD together with phonon spectral analysis will revolutionize thermal transport property prediction of a wide range of materials of technological importance, on which atomic scale prediction was not possible before due to the lack of empirical interatomic potentials. The methods will also be used on practically important thermoelectric and photovoltaic nanomaterials, including Bi2Te3 and GaAs, for the first time to guide experimental synthesis.The research effort will impact thermal science and education/outreach programs. The new prediction methods will be of broad interest due to their generality. Important applications, including thermal management, thermoelectrics, electronics, and photovoltaics will benefit from the new insights generated using these methods. Under-represented and undergraduate students will continue to be involved in research. A key education/outreach component would be the dissemination of the research and education codes resulted from this project to nanoHUB and thermalHUB for general public use. Comprehensive documentation, online lectures, and tutorials explaining the codes will be provided. These materials will be of wide interest in the PI's field given the new capabilities they provide.
PI:Xiulin Ruan,普渡大学提案编号:CBET-1150948 拟议的工作将能够根据第一原理预测固体的导热和辐射特性。固体的导热性和远红外热辐射特性是许多现代和新兴应用(例如热管理、电子、光伏和热电)中的关键问题。这两种性质虽然看似无关,但在原子尺度上受到称为声子的同一热能载体的色散关系和弛豫时间的控制。为了指导这些材料的设计和合成,非常需要根据第一原理(即在不使用可调参数的情况下根据其原子结构)来预测它们的热性能。然而,即使对于硅和碳等标准材料,现有的经典原子间势也是不准确的,因为这些势并非用于热传输建模的目的。对于大多数其他固体,经典势尚未开发出来,因此无法预测其热传输特性。因此,该提案的目标是制定新的方法,可以开发准确的原子间势或可以完全绕过经典势的使用,以进行热性质预测。为了实现这一目标,将并行开发两种多尺度多物理场方法。在第一种方法中,第一原理计算将用于开发精确的经典原子间势,该势针对热输运建模进行了有意优化,然后该势将用于经典 MD 来预测热导率。为了绕过具有挑战性和繁琐的潜在开发过程,第二种方法将引入一种新的紧束缚分子动力学(TBMD)方法来产生原子的轨迹,然后将其用于声子谱分析以获得光谱声子弛豫时间以及导热性和辐射性能。预测能力将首先在硅等标准材料上得到证明,然后在一系列重要但复杂的热电和光伏材料上得到证明,包括 Bi2Te3 和 GaAs 块体和纳米材料。该提案的智力价值集中在基于导热和辐射特性的第一原理。紧束缚MD与声子光谱分析相结合将彻底改变各种具有技术重要性的材料的热传输特性预测,而以前由于缺乏经验原子间势而无法进行原子尺度的预测。这些方法还将首次用于实际重要的热电和光伏纳米材料,包括 Bi2Te3 和 GaAs,以指导实验合成。这项研究工作将影响热科学和教育/推广计划。新的预测方法由于其通用性而将引起广泛的兴趣。包括热管理、热电、电子和光伏在内的重要应用将受益于使用这些方法产生的新见解。代表性不足的学生和本科生将继续参与研究。一个关键的教育/外展组成部分是将本项目产生的研究和教育代码传播到 nanoHUB 和 heatHUB 供公众使用。将提供全面的文档、在线讲座和解释代码的教程。鉴于它们提供的新功能,这些材料将引起 PI 领域的广泛关注。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiulin Ruan其他文献
Four phonon-dominated near-field radiation in weakly anharmonic polar materials
- DOI:
- 发表时间:
2023-09-29 - 期刊:
- 影响因子:0
- 作者:
Dudong Feng;Xiaolong Yang;Zherui Han;Xiulin Ruan - 通讯作者:
Xiulin Ruan
Glass‐Like Through‐Plane Thermal Conductivity Induced by Oxygen Vacancies in Nanoscale Epitaxial La0.5Sr0.5CoO3−δ
玻璃 — 类透 — 纳米级外延 La0.5Sr0.5CoO3 中氧空位引起的平面热导率 —
- DOI:
10.20933/100001143 - 发表时间:
2017 - 期刊:
- 影响因子:19
- 作者:
Xuewang Wu;Jeff Walter;Tianli Feng;Jie Zhu;Hong Zheng;John F. Mitchell;Neven Biskup;Maria Varela;Xiulin Ruan;Chris Leighton;Xiaojia Wang - 通讯作者:
Xiaojia Wang
Enhancing photo-induced ultrafast charge transfer across heterojunctions of CdS and laser-sintered TiO2nanocrystals
- DOI:
10.1039/c4cp01298d - 发表时间:
2014-04 - 期刊:
- 影响因子:3.3
- 作者:
Bryan T. Spann;S. Venkataprasad Bhat;Qiong Nian;Kelly M. Rickey;Gary J. Cheng;Xiulin Ruan;Xianfan Xu - 通讯作者:
Xianfan Xu
Sampling-accelerated prediction of phonon scattering rates for converged thermal conductivity and radiative properties
收敛热导率和辐射特性的声子散射率的采样加速预测
- DOI:
10.1038/s41524-024-01215-8 - 发表时间:
2024-02-07 - 期刊:
- 影响因子:9.7
- 作者:
Ziqi Guo;Zherui Han;Dudong Feng;Guang Lin;Xiulin Ruan - 通讯作者:
Xiulin Ruan
True benefits of multiple nanoparticle sizes in radiative cooling paints identified with machine learning
通过机器学习识别辐射冷却涂料中多种纳米颗粒尺寸的真正好处
- DOI:
10.1016/j.ijheatmasstransfer.2024.125209 - 发表时间:
2024-09-14 - 期刊:
- 影响因子:5.2
- 作者:
Daniel Carne;J. Peoples;Fredrik Arentz;Xiulin Ruan - 通讯作者:
Xiulin Ruan
Xiulin Ruan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiulin Ruan', 18)}}的其他基金
Collaborative Research: Thermal Transport via Four-Phonon and Exciton-Phonon Interactions in Layered Electronic and Optoelectronic Materials
合作研究:层状电子和光电材料中四声子和激子-声子相互作用的热传输
- 批准号:
2321301 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Elements: FourPhonon: A Computational Tool for Higher-Order Phonon Anharmonicity and Thermal Properties
元素:FourPhonon:高阶声子非谐性和热性质的计算工具
- 批准号:
2311848 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CDS&E: First Principles Prediction of Thermal Radiative Properties of Dielectric Materials
CDS
- 批准号:
2102645 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CDS&E: First Principles Prediction of Thermal Radiative Properties of Dielectric Materials
CDS
- 批准号:
2102645 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Collaborative Research: High-order Phonon Scattering and Highly Nonequilibrium Carrier Transport in Two-dimensional Electronic and Optoelectronic Materials
合作研究:二维电子光电材料中的高阶声子散射和高度非平衡载流子输运
- 批准号:
2015946 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: High-order Phonon Scattering and Highly Nonequilibrium Carrier Transport in Two-dimensional Electronic and Optoelectronic Materials
合作研究:二维电子光电材料中的高阶声子散射和高度非平衡载流子输运
- 批准号:
2015946 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Predictive Design of Nanocrystal Photovoltaic Materials Based on the Phonon Bottleneck Effect
基于声子瓶颈效应的纳米晶光伏材料预测设计
- 批准号:
0933559 - 财政年份:2009
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似国自然基金
基于第一性原理训练深度势研究光电催化材料中的极化子问题
- 批准号:12304216
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于第一性原理精度分子动力学的过冷水反常物理性质研究
- 批准号:12374217
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
基于第一性原理设计制备高性能钨合金的基础研究
- 批准号:52371091
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
准一维铬砷基超导材料电子关联动力学性质的第一性原理研究
- 批准号:12304175
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于第一性原理的含酚类生物再生剂热裂解逆向调控与代替老化再生机理
- 批准号:52308445
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Real-Time First-Principles Approach to Understanding Many-Body Effects on High Harmonic Generation in Solids
职业:实时第一性原理方法来理解固体高次谐波产生的多体效应
- 批准号:
2337987 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: First-Principles Discovery of Optically Excited States in Van der Waals Magnetic Structures
职业生涯:范德华磁结构中光激发态的第一原理发现
- 批准号:
2339995 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Understanding Electrochemical Metal Extraction in Molten Salts from First Principles
职业:从第一原理了解熔盐中的电化学金属萃取
- 批准号:
2340765 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics
职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征
- 批准号:
2415119 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Quantum Coherence, Optical Readout, and Quantum Transduction for Spin Qubits from First-Principles Calculations
职业:基于第一原理计算的自旋量子位的量子相干性、光学读出和量子传导
- 批准号:
2342876 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant