New Frontier in Materials Science: Artificial Nanosolids
材料科学新前沿:人造纳米固体
基本信息
- 批准号:1158666
- 负责人:
- 金额:$ 24.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-01 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
TECHNICAL SUMMARYThis award supports theoretical work on the physics of a new class of materials, called artificial nanosolids, which are arrays of small particles, embedded in an insulating matrix, with sizes ranging from a few to hundreds of nanometers. Their properties depend on the competition of several energy scales: tunneling energy, Coulomb energy, temperature, electron lifetime within a grain, and the mean energy level spacing for a single particle. Small granules are often viewed as artificial atoms. Accordingly, granular arrays can be treated as artificial solids with programmable electronic properties. The ease of adjusting electronic properties of artificial nanosolids is one of their most attractive assets for fundamental studies of disordered solids and for targeted applications in nanotechnology. An early determination and understanding of the properties of artificial nanosolids will have far-reaching consequences in the emerging nano-electronics industry as these new materials will be the main building blocks of future quantum electronics and spintronic devices. Furthermore, new fundamental quantum phenomena such as Coulomb blockade effects, which are predicted to occur in these artificial nanosolids may hold prospects for their applications in novel quantum memory devices and quantum computers. The theoretical studies to be carried out will provide fundamental insight into how the novel bulk behavior of artificial nanosolids may be predicted, controlled and manipulated by varying the size, composition, and coupling strength between nanometer-scale building blocks. The research project has three parts devoted to superconducting, magnetic, and semiconducting nanosolids, respectively. The research on superconducting nanosolids is important because of the appearance of new quantum effects which arise from the confinement of superconductivity within the grains, and possible applications in superconducting devices. Magnetic nanosolids are important because this new class of materials offers an exemplary model system for the investigation of disordered magnets. The research on semiconducting nanosolids is relevant because these materials are now accessible for next generation thermoelectric devices. In addition, granularity is a rather general phenomenon and even the homogeneous disordered systems in the vicinity of the critical points often possess a self-induced granularity. Progress on these problems represent a new paradigm and will have strong impact on condensed matter physics and materials science.This award supports the PI's educational activities through the training of a graduate student and a postdoctoral fellow in advanced nanomaterials science. The PI will develop a novel cross-disciplinary course on nanotechnology for physics students. In addition, the research will help stimulate and further develop strong university-national laboratory partnerships, as it will strengthen the PI's ongoing collaborations with Argonne National Laboratory.NON-TECHNICAL SUMMARYThis award supports theoretical research and education in condensed matter physics. The theoretical work takes its inspiration from discovery of new materials, called "artificial nanosolids", which are arrays of small particles, embedded in an insulating material, with sizes ranging from a few to hundreds of nanometers (a nanometer is approximately one millionth the size of the human hair). The grains in artificial nanosolids interact with each other in various ways and offer rich new horizons of novel macroscopic behavior emerging from nanoscale structure and dynamics. Fundamental microscopic phenomena in these materials can produce dramatically new and programmable bulk behavior when mediated by their granular structure. The theoretical studies to be carried out will provide fundamental insight into how the novel bulk behavior of artificial nanosolids may be predicted, controlled and manipulated by varying the size, composition, and coupling strength between nanometer-scale building blocks. The research is interdisciplinary with a focus at the interface between physics, materials science, and nanoscience. This award supports the PI's educational activities through the training of a graduate student and a postdoctoral fellow in advanced nanomaterials science. The PI will develop a novel cross-disciplinary course on nanotechnology for physics students. In addition, the research will help further develop strong university-national laboratory partnerships, as it will strengthen the PI's ongoing collaborations with Argonne National Laboratory.
技术摘要这一奖项支持有关新型材料物理学的理论工作,称为人造纳米固体,它们是小颗粒的阵列,嵌入了绝缘矩阵中,尺寸从几个到数百纳米。它们的特性取决于几个能量尺度的竞争:隧道能量,库仑能量,温度,晶粒内的电子寿命以及单个粒子的平均能级间距。小颗粒通常被视为人造原子。因此,颗粒阵列可以视为具有可编程电子特性的人造固体。调整人造纳米固体的电子特性的易于性是其基本研究无序固体和纳米技术中有针对性应用的最吸引人的资产之一。对人造纳米固体的性质的早期确定和理解将在新兴的纳米电子产业中产生深远的影响,因为这些新材料将是未来量子电子和Spintronic设备的主要组成部分。 此外,预计将在这些人工纳米固体中发生的新的基本量子现象,例如库仑封锁效应,可能会在新型量子存储器和量子计算机中应用它们的应用。要进行的理论研究将提供有关如何通过改变纳米尺度构建块之间的大小,组成和耦合强度来预测,控制和操纵人造纳米固体的新型散装行为的基本见解。该研究项目分别致力于超导,磁性和半导体纳米固体。关于超导纳米固体的研究很重要,因为出现了新的量子效应,这是由于谷物内超导性的限制以及在超导器件中的可能应用而产生的。磁性纳米固醇很重要,因为这种新的材料提供了一个模型模型系统,用于研究无序磁铁。关于半导体纳米固体的研究很重要,因为这些材料现在可以用于下一代热电设备。此外,粒度是一种相当普遍的现象,甚至临界点附近的同质无序系统通常都具有自我诱导的粒度。这些问题的进展代表了一个新的范式,并将对凝结的物理和材料科学产生强大的影响。该奖项通过培训研究生和高级纳米材料科学的博士后研究员来支持PI的教育活动。 PI将开发一门针对物理学生的纳米技术的新颖跨学科课程。此外,这项研究将有助于刺激并进一步发展强大的大学实验室伙伴关系,因为它将加强PI与Argonne国家实验室的持续合作。没有技术总结颁奖此奖,支持凝聚态物理学的理论研究和教育。理论工作从发现“人造纳米固醇”的新材料的发现中启发了它的灵感,它们是小颗粒的阵列,嵌入了绝缘材料中,尺寸从几个到数百纳米(纳米尺寸约为人的头发大小))。人造纳米固体中的谷物以各种方式相互作用,并提供了从纳米级结构和动力学中出现的新型宏观行为的新范围。 当这些材料中的基本微观现象在通过其颗粒结构介导时会产生巨大的新型和可编程的体积行为。要进行的理论研究将提供有关如何通过改变纳米尺度构建块之间的大小,组成和耦合强度来预测,控制和操纵人造纳米固体的新型散装行为的基本见解。 这项研究是跨学科的,重点是物理,材料科学和纳米科学之间的接口。该奖项通过培训研究生和高级纳米材料科学的博士后研究员来支持PI的教育活动。 PI将开发一门针对物理学生的纳米技术的新颖跨学科课程。此外,该研究将有助于进一步发展强大的大学实验室伙伴关系,因为它将加强PI与Argonne National Laboratory的持续合作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Igor Beloborodov其他文献
Igor Beloborodov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
中缅边境恶性疟原虫对双氢青蒿素-哌喹的抗药性研究及该地区恶性疟替代治疗方案探索
- 批准号:32360118
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
碳边境调节机制对我国区域经济、社会和环境协调发展的影响——考虑企业所有制异质性的研究
- 批准号:72303240
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
图们江流域中国边境地区候鸟-蜱-蜱携带病原流行病学数据库的建立及候鸟对蜱携带病原体多态性影响机制研究
- 批准号:32360886
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于电波传播先验知识的边境区域无线电发射源定位及应用研究
- 批准号:62361055
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
西藏边境城镇人居单元的传承机制及适宜性营造模式研究
- 批准号:52308035
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Engineered topological nanostructures – a new frontier in materials design
工程拓扑纳米结构——材料设计的新前沿
- 批准号:
DP240100238 - 财政年份:2024
- 资助金额:
$ 24.3万 - 项目类别:
Discovery Projects
Diamane: A New Frontier in Materials Science
钻石烷:材料科学的新前沿
- 批准号:
DP230100542 - 财政年份:2023
- 资助金额:
$ 24.3万 - 项目类别:
Discovery Projects
New insights into extracellular signal transduction
细胞外信号转导的新见解
- 批准号:
10566506 - 财政年份:2023
- 资助金额:
$ 24.3万 - 项目类别:
Washington University Intellectual and Developmental Disabilities Research Center
华盛顿大学智力与发育障碍研究中心
- 批准号:
10631989 - 财政年份:2020
- 资助金额:
$ 24.3万 - 项目类别:
Washington University Intellectual and Developmental Disabilities Research Center
华盛顿大学智力与发育障碍研究中心
- 批准号:
10630425 - 财政年份:2020
- 资助金额:
$ 24.3万 - 项目类别: