Collaborative Research: III: Small: Physics Guided Graph Networks for Modeling Water Dynamics in Freshwater Ecosystems

合作研究:III:小型:用于模拟淡水生态系统中水动力学的物理引导图网络

基本信息

  • 批准号:
    2316306
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2026-09-30
  • 项目状态:
    未结题

项目摘要

Fresh water plays an important role for the global economic, food, water, and energy networks, but freshwater ecosystems continue to degrade due to pressures from increasing demands for freshwater ecosystem services and a shifting climate. Timely monitoring of water properties can provide useful information for sound policy and management decisions to address important water-related challenges such as droughts, floods, and water security. Moreover, the information of water properties such as water temperature and streamflow can help better understand relevant biogeochemical and ecological processes in the water cycle. The recent investment on large-scale water data repositories provides a tremendous opportunity for using machine learning to capture complex water dynamics over space and time. In particular, graph neural networks have shown great promise for modeling interactions amongst streams in large river basins. However, in the absence of underlying physical knowledge, direct applications of existing graph-based models remain limited in capturing complex water-related processes, modeling the shift of data distribution caused by human infrastructure or changing climate, and learning from a paucity of data samples. To overcome these limitations, this project will explore a deep coupling of graph network models with physical knowledge to model complex, non-stationary, poorly observed water dynamics in freshwater ecosystems. This project will provide research opportunities to graduate and undergraduate students from diverse backgrounds, and the results of this project will be incorporated into curriculum development. This project aims to develop new physics-guided graph network models by designing new model architectures, learning strategies, and initialization methods. This project will also explore different ways to leverage physical knowledge, both directly by integrating physics from known mathematical equations, and indirectly by making use of the knowledge embodied in existing physics-based models. In particular, there are three innovations that are pursued in this project. First, new graph-based architectures will be developed to model the complex nature of physical objects and the dynamic interactions between physical processes. Second, new graph-based continual learning strategies will be investigated to model long term system evolution caused by newly added infrastructure and changing climate. Third, new model initialization methods will be developed by transferring knowledge from existing physics-based models to the proposed graph network models to facilitate learning physically consistent patterns in data-scarce scenarios.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
淡水在全球经济、粮食、水和能源网络中发挥着重要作用,但由于淡水生态系统服务需求不断增加和气候变化带来的压力,淡水生态系统持续退化。及时监测水特性可以为健全的政策和管理决策提供有用的信息,以应对干旱、洪水和水安全等与水相关的重要挑战。此外,水温、流量等水性质信息有助于更好地了解水循环中的相关生物地球化学和生态过程。 最近对大型水数据存储库的投资为使用机器学习捕获空间和时间上的复杂水动态提供了巨大的机会。特别是,图神经网络在对大河流域河流之间的相互作用进行建模方面显示出了巨大的前景。然而,在缺乏基础物理知识的情况下,现有基于图的模型的直接应用在捕获复杂的与水相关的过程、对人类基础设施或气候变化引起的数据分布变化进行建模以及从缺乏数据样本中学习方面仍然受到限制。 。为了克服这些限制,该项目将探索图网络模型与物理知识的深度耦合,以对淡水生态系统中复杂、非平稳、观察不良的水动态进行建模。该项目将为来自不同背景的研究生和本科生提供研究机会,该项目的成果将纳入课程开发。该项目旨在通过设计新的模型架构、学习策略和初始化方法来开发新的物理引导图网络模型。该项目还将探索利用物理知识的不同方法,包括直接通过已知数学方程整合物理知识,以及间接利用现有基于物理的模型中体现的知识。特别是,该项目追求三项创新。首先,将开发新的基于图的架构来模拟物理对象的复杂性质以及物理过程之间的动态交互。其次,将研究新的基于图的持续学习策略,以模拟由新增基础设施和气候变化引起的长期系统演化。第三,将通过将现有基于物理的模型的知识转移到所提出的图网络模型来开发新的模型初始化方法,以促进在数据稀缺场景中学习物理一致的模式。该奖项反映了 NSF 的法定使命,并被认为值得通过以下方式支持:使用基金会的智力价值和更广泛的影响审查标准进行评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sheng Li其他文献

Progress of the China mammal diversity observation network (China BON-Mammal) based on camera-trapping
基于相机捕捉的中国哺乳动物多样性观测网络(China BON-Mammal)进展
  • DOI:
    10.17520/biods.2020142
  • 发表时间:
    2020-09-20
  • 期刊:
  • 影响因子:
    0
  • 作者:
    W. Yaqiong;Jiaqi Li;Xing;Sheng Li;Haigen Xu
  • 通讯作者:
    Haigen Xu
ClinicalRadioBERT: Knowledge-Infused Few Shot Learning for Clinical Notes Named Entity Recognition
ClinicalRadioBERT:用于临床笔记命名实体识别的知识注入少量学习
  • DOI:
    10.1007/978-3-031-21014-3_28
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Saed Rezayi;Haixing Dai;Zheng;Zihao Wu;Akarsh Hebbar;Andrew H. Burns;Lin Zhao;Dajiang Zhu;Quanzheng Li;W. Liu;Sheng Li;Tianming Liu;Xiang Li
  • 通讯作者:
    Xiang Li
An unsupervised approach to rank product reviews
对产品评论进行排名的无监督方法
A Unifying Pathophysiological Account for Post-stroke Spasticity and Disordered Motor Control
中风后痉挛和运动控制障碍的统一病理生理学解释
  • DOI:
    10.3389/fneur.2019.00468
  • 发表时间:
    2019-05-10
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Sheng Li;Yen;G. Francisco;P. Zhou;W. Rymer
  • 通讯作者:
    W. Rymer
CNN Based Wildlife Recognition with Super-Pixel Segmentation for Ecological Surveillance
基于 CNN 的野生动物识别和超像素分割用于生态监测

Sheng Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sheng Li', 18)}}的其他基金

CRII: SCH: Analysis of Population-Based Image Metamorphosis
CRII:SCH:基于人群的图像变形分析
  • 批准号:
    1755970
  • 财政年份:
    2018
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant

相似国自然基金

睡眠剥夺通过上调BMAL1/IL-17轴促进三级淋巴结构形成加重哮喘的研究
  • 批准号:
    82300039
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
富醌生物炭促进三价铁还原强化人工湿地总氮去除作用机制及调控策略研究
  • 批准号:
    52300213
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
三维拓扑结构支架在定向引导神经干细胞修复耳蜗螺旋神经节中的作用及机制研究
  • 批准号:
    82301331
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于三维流体微环境控制与原位表征的人工微血管组织构建方法研究
  • 批准号:
    62373235
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

III : Medium: Collaborative Research: From Open Data to Open Data Curation
III:媒介:协作研究:从开放数据到开放数据管理
  • 批准号:
    2420691
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
  • 批准号:
    2322973
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
  • 批准号:
    2322974
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
  • 批准号:
    2342497
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: A DREAM Proactive Conversational System
合作研究:III:小型:一个梦想的主动对话系统
  • 批准号:
    2336769
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了