CAREER: Multimodal Brain and Body Music Interfaces to Promote Entrainment, Connection, and Creative Science Education

职业:多模式大脑和身体音乐界面促进夹带、联系和创造性科学教育

基本信息

  • 批准号:
    2313518
  • 负责人:
  • 金额:
    $ 48.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-04-01 至 2027-08-31
  • 项目状态:
    未结题

项目摘要

This award is funded in part under the American Rescue Plan Act of 2021 (Public Law 117-2). Entrainment is a process in which people’s natural brain and body rhythms synchronize, through stimuli such as music, which may create feelings of connection and well-being. This project addresses entrainment by building multimodal signal mapping interfaces that mediate interpersonal connections by deriving music from brain and body rhythms. The investigator will integrate sensor hardware and signal processing software to stream live brain and body data, perform calculations to extract signal characteristics, and use this to drive sound synthesis. A series of music cognition and listening experiments study physiological, behavioral, and affective entrainment phenomena, which are expected to result, from a series of multimodal brain music interfaces. A use-case study, developed in consultation with doctors, connects mothers and infants, physically separated by distance, using the multimodal entrainment interface. Mother and infant hear music derived from each other’s heartbeats and breathing. This study investigates the entrainment created in their body rhythms, and maps health and well-being effects of the virtual connection environment. For researchers, doctors, and caretakers, multimodal brain music interfaces have the potential to expand our scientific understanding of music’s beneficial effects on the brain and body, which may lead to new health and well-being interventions for adults, children, and infants. This project will result in an open-source tool kit of accessible technologies and STEM learning modules to inspire educators and students to develop projects that further our understanding of brain and body signals. These learning modules will be integrated into a summer research experience--involving high school students and their teachers--in which authentic learning encourages students’ training in the scientific method through their natural interest in music. This project develops and evaluates an interface with new multimodal signal mapping technologies that translate neurophysiological signals (e.g., EEG, ECG, EDA, respiration) into musical sound to promote biological, behavioral, and affective synchrony between individuals and computers by: (1) engineering sonification techniques that perform real-time signal processing and algorithmic music generation for transforming physiological signals into music; (2) investigating the neuropsychological mechanisms that govern auditory neurostimulation and physiological entrainment by designing new rhythmic auditory neurophysiological sonification stimuli and measuring how the human body responds; and (3) designing and evaluating a use case that involves co-generating music for infants and their mothers with each other’s physiological data. Quantitative data will address synchronies in physiology, protocol analysis of video will address behavioral synchronies, and qualitative data will address experiences. These research activities will contribute to an overarching goal of discovering how using computing to pair music and physiology can function as a significant information channel in human-centered computing. One expected use of this channel is to promote human connection and well-being through entrainment.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项的部分资助是根据《2021 年美国救援计划法案》(公法 117-2)进行的。诱导是通过音乐等刺激使人们的自然大脑和身体节律同步的过程,这可能会产生联系和良好的感觉。该项目通过构建多模式信号映射接口来解决夹带问题,该接口通过从大脑和身体节奏中获取音乐来调节人际联系,研究人员将集成传感器硬件和信号处理软件来传输实时大脑和身体。数据,执行计算以提取信号特征,并使用它来驱动声音合成,研究生理、行为和情感夹带现象,这些现象预计是由一系列多模态大脑音乐接口产生的。与医生协商后开发的一项用例研究,使用多模式夹带界面将物理上分开的母亲和婴儿联系起来,该研究调查了所产生的夹带。对于研究人员、医生和护理人员来说,多模式大脑音乐界面有可能扩展我们对音乐对大脑和身体有益影响的科学理解。可能会为成人、儿童和婴儿带来新的健康和福祉干预措施,该项目将产生一个包含可访问技术和 STEM 学习模块的开源工具包,以激励教育工作者和学生开发进一步了解大脑的项目。这些学习模块将。融入暑期研究经验(涉及高中生及其老师),其中真实的学习鼓励学生通过他们对音乐的自然兴趣进行科学方法的培训。该项目开发并评估了与新的多模态信号映射技术的接口。将神经生理学信号(例如脑电图、心电图、EDA、呼吸)转化为音乐声音,以通过以下方式促进个人和计算机之间的生物、行为和情感同步:(1)执行实时信号处理和算法的工程声化技术将生理信号转化为音乐的音乐生成;(2)通过设计新的有节奏的听觉神经生理学发声刺激并测量人体的反应来研究控制听觉神经刺激和生理夹带的神经心理学机制;以及(3)设计和评估一个用例涉及为婴儿及其母亲利用彼此的生理数据共同生成音乐。定量数据将解决生理学的同步问题,视频协议分析将解决行为同步问题,定性数据将解决体验问题。将有助于发现如何使用计算将音乐和生理学配对作为以人为中心的计算中的重要信息通道,该通道的一个预期用途是通过夹带促进人类联系和福祉。该奖项由 NSF 授予。法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Grace Leslie其他文献

Measuring musical engagement using expressive movement and EEG brain dynamics.
使用表达性运动和脑电图大脑动态来测量音乐参与度。
Design of a physiological parameter monitoring system, implementing internet of things communication protocols by using embedded Systems
生理参数监测系统的设计,利用嵌入式系统实现物联网通信协议
Effect of Time Delay on Ensemble Accuracy
时间延迟对集成精度的影响
First demonstration of an EEG-based emotion BCI
首次演示基于脑电图的情感 BCI
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Makeig;Grace Leslie;T. Mullen;D. Sarma;N. Bigdely;Christian Kothe
  • 通讯作者:
    Christian Kothe
Mind the Beat: Detecting Audio Onsets from EEG Recordings of Music Listening
注意节拍:从音乐聆听的脑电图记录中检测音频起始点

Grace Leslie的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Grace Leslie', 18)}}的其他基金

CAREER: Multimodal Brain and Body Music Interfaces to Promote Entrainment, Connection, and Creative Science Education
职业:多模式大脑和身体音乐界面促进夹带、联系和创造性科学教育
  • 批准号:
    2142959
  • 财政年份:
    2022
  • 资助金额:
    $ 48.99万
  • 项目类别:
    Continuing Grant

相似国自然基金

多式联运中物流合作问题的博弈分析与机制设计
  • 批准号:
    72301214
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于系统可靠性分析理论的不确定性多式联运网络韧性分析和优化
  • 批准号:
    52302374
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
提高城市可达性和连通性的电动多式联运系统
  • 批准号:
    72361137006
  • 批准年份:
    2023
  • 资助金额:
    200 万元
  • 项目类别:
    国际(地区)合作与交流项目
不确定环境下多式联运系统优化与协作机制研究
  • 批准号:
    72371169
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
基于多源数据融合的集装箱多式联运运力资源优化研究
  • 批准号:
    72173013
  • 批准年份:
    2021
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目

相似海外基金

Individual Multimodal Pathway Statistics for Predicting Treatment Response in Late-life Depression
用于预测晚年抑郁症治疗反应的个体多模式通路统计
  • 批准号:
    10722921
  • 财政年份:
    2023
  • 资助金额:
    $ 48.99万
  • 项目类别:
Using Artificial Intelligence to Predict Cognitive Training Response in Amnestic Mild Cognitive Impairment
使用人工智能预测遗忘型轻度认知障碍患者的认知训练反应
  • 批准号:
    10572105
  • 财政年份:
    2023
  • 资助金额:
    $ 48.99万
  • 项目类别:
Toward a neuroscientific understanding of the interaction between Down syndrome and Alzheimer's disease pathology
对唐氏综合症和阿尔茨海默病病理学之间相互作用的神经科学理解
  • 批准号:
    10723666
  • 财政年份:
    2023
  • 资助金额:
    $ 48.99万
  • 项目类别:
Childhood Socioeconomic Disadvantage and Antisocial Behavior: Investigating the Role of Reward Processing
童年社会经济劣势和反社会行为:调查奖励处理的作用
  • 批准号:
    10677099
  • 财政年份:
    2023
  • 资助金额:
    $ 48.99万
  • 项目类别:
Spatiotemporal Dynamics of Language Processing in School-Age Children with Mild-to-Severe Hearing Loss
轻度至重度听力损失学龄儿童语言处理的时空动态
  • 批准号:
    10652918
  • 财政年份:
    2023
  • 资助金额:
    $ 48.99万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了