Carbon monoxide resistance in Mycobacterium tuberculosis pathogenesis
结核分枝杆菌发病机制中的一氧化碳耐药性
基本信息
- 批准号:8438755
- 负责人:
- 金额:$ 39.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-27 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAcidsActive SitesAerosolsAffinity ChromatographyAmino AcidsAntibioticsAntimicrobial ResistanceAttenuatedBacteriaBiochemicalBiochemistryBiological AssayCarbon MonoxideCell SurvivalCellsCessation of lifeCommunicable DiseasesDataDevelopmentDiseaseDrug Delivery SystemsDrug resistanceElectron TransportEnvironmental Risk FactorEnzymesEpidemicGasesGenesGlycineGoalsGrowthHemeHistopathologyHomeostasisHost DefenseHumanHypoxiaImmune responseIncidenceInfectionKineticsKnowledgeLibrariesMediatingMetabolicMetabolismMicrobiologyModelingMolecularMolecular ModelsMorbidity - disease rateMusMutateMutationMycobacterium tuberculosisNADHNitric OxideNucleotidesOrganOutcomeOxygenOxygenasesPathogenesisPathway interactionsPeroxonitritePharmaceutical PreparationsPhenotypePhysiologyPopulationPredispositionProteinsProteomicsPyruvate Metabolism PathwayResearchResistanceRoleScreening procedureSystemTestingTherapeutic InterventionTuberculosisVirulenceWorkantimicrobialbasegenetic analysisglobal healthheme oxygenase-1in vivoinhibitor/antagonistkillingsknowledge basemacrophagemetabolomicsmicrobialmolecular modelingmortalitymutantmycobacterialnovelnovel strategiesoverexpressionpathogenreactive oxygen intermediateresearch studyresistance mechanismresponsetranscriptomicstuberculosis treatment
项目摘要
DESCRIPTION (provided by applicant): Mycobacterium tuberculosis remains one of the most devastating human infectious diseases, causing two million deaths annually and latently infecting a third of the world's population. As an intracellular pathogen adapted to long-term survival, M. tuberculosis has evolved mechanisms to resist killing by host antimicrobial pathways. Targeting those resistance mechanisms has recently emerged as a powerful new approach to treating M. tuberculosis infection by enhancing the host's ability to eradicate the bacteria. However, the full repertoire of mycobacterial resistance genes is not known, and expanding this knowledge base provides additional avenues for the development of new drugs. We demonstrated the M. tuberculosis induces an enzyme, heme oxygenase, that produces carbon monoxide (CO) gas, and that M. tuberculosis both adapts to and resists killing by CO. We hypothesized that M. tuberculosis evolved genes for CO resistance, and our preliminary data indicate that M. tuberculosis encodes one such gene that when mutated results in attenuated virulence. We will apply metabolomic, transcriptomic, proteomic, and biochemical approaches to determine the function of the newly discovered CO resistance protein. Thus, in the proposed research we will (1) identify the molecular mechanism of CO resistance, (2) determine the interacting partners of the CO resistance gene and their role in CO resistance and (3) characterize the pathogenic effects of mutants in the CO resistance gene and its interacting partners. The proposed work will extend the current knowledge on M. tuberculosis's antimicrobial resistance mechanisms and reveal a novel microbial survival strategy. PUBLIC HEALTH RELEVANCE: Tuberculosis is a major human pathogen, accounting for significant morbidity and mortality worldwide. Work outlined in this proposal will investigate a novel mechanism that allows M. tuberculosis to survive and persist within humans. We expect that this work will help identify new potential drug targets for the treatment of tuberculosis.
PUBLIC HEALTH RELEVANCE: The mechanisms used by Mycobacterium tuberculosis to survive within the host are incompletely understood. We propose to study how M. tuberculosis survives exposure to carbon monoxide, a toxic gas produced by host macrophages, focusing on the mycobacterial gene Rv1829 that we identified in a screen for CO resistance mutants. This approach is novel because it represents the first description of a CO resistance gene in a major human pathogen.
描述(由申请人提供):结核分枝杆菌仍然是最具破坏性的人类传染病之一,每年造成200万人死亡,并延伸到世界三分之一的人口中。作为适合长期生存的细胞内病原体,结核分枝杆菌具有抵抗宿主抗菌途径杀死的机制。靶向这些抗性机制最近已成为一种强大的新方法,可以通过增强宿主消除细菌的能力来治疗结核分枝杆菌感染。但是,分枝杆菌抗性基因的全部曲目尚不清楚,扩大该知识库为开发新药提供了更多途径。我们证明了结核分枝杆菌会诱导产生一氧化碳(CO)气体的酶,血红素氧酶,并且结核分枝杆菌均适应并抵抗CO的杀伤。我们将采用代谢组学,转录组,蛋白质组学和生化方法来确定新发现的CO耐药性蛋白的功能。因此,在拟议的研究中,我们将(1)确定CO抗性的分子机制,(2)确定CO耐药基因的相互作用伙伴及其在CO抗性中的作用,以及(3)表征突变体在CO抗性基因及其相互作用伴侣中的致病作用。拟议的工作将扩展有关结核分枝杆菌抗菌抗性机制的当前知识,并揭示出一种新型的微生物生存策略。公共卫生相关性:结核病是一种主要的人类病原体,涉及全球的大量发病率和死亡率。该提案中概述的工作将研究一种新型机制,该机制使结核分枝杆菌能够在人类内生存并持续存在。我们预计这项工作将有助于确定治疗结核病的新潜在药物靶标。
公共卫生相关性:分枝杆菌在宿主内生存的机制尚不完全了解。我们建议研究结核分枝杆菌如何在宿主巨噬细胞产生的一种有毒气体中幸存下来,重点是我们在CO耐药性突变体筛选中鉴定出的分枝杆菌基因RV1829。这种方法是新颖的,因为它代表了主要人类病原体中CO抗性基因的第一个描述。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MICHAEL SHILOH其他文献
MICHAEL SHILOH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MICHAEL SHILOH', 18)}}的其他基金
Mechanisms of cough in Mycobacterium tuberculosis transmission
咳嗽在结核分枝杆菌传播中的机制
- 批准号:
10368154 - 财政年份:2021
- 资助金额:
$ 39.75万 - 项目类别:
Project 3: Mechanisms of cough in M. tuberculosis transmission
项目3:咳嗽在结核分枝杆菌传播中的机制
- 批准号:
10404532 - 财政年份:2021
- 资助金额:
$ 39.75万 - 项目类别:
Mechanisms of cough in Mycobacterium tuberculosis transmission
咳嗽在结核分枝杆菌传播中的机制
- 批准号:
10578845 - 财政年份:2021
- 资助金额:
$ 39.75万 - 项目类别:
Project 3: Mechanisms of cough in M. tuberculosis transmission
项目3:咳嗽在结核分枝杆菌传播中的机制
- 批准号:
10190651 - 财政年份:2021
- 资助金额:
$ 39.75万 - 项目类别:
Project 3: Mechanisms of cough in M. tuberculosis transmission
项目3:咳嗽在结核分枝杆菌传播中的机制
- 批准号:
10610926 - 财政年份:2021
- 资助金额:
$ 39.75万 - 项目类别:
Mechanisms of cough in Mycobacterium tuberculosis transmission
咳嗽在结核分枝杆菌传播中的机制
- 批准号:
10185506 - 财政年份:2021
- 资助金额:
$ 39.75万 - 项目类别:
RP4: Harnessing autophagy to treat tuberculosis
RP4:利用自噬治疗结核病
- 批准号:
10573263 - 财政年份:2019
- 资助金额:
$ 39.75万 - 项目类别:
RP4: Harnessing autophagy to treat tuberculosis
RP4:利用自噬治疗结核病
- 批准号:
10364726 - 财政年份:2019
- 资助金额:
$ 39.75万 - 项目类别:
Human airway microfold cells in mucosal immunity to bacterial pathogens
人气道微褶皱细胞对细菌病原体的粘膜免疫
- 批准号:
9170079 - 财政年份:2016
- 资助金额:
$ 39.75万 - 项目类别:
Identification of novel M. tuberculosis secreted effector proteins
新型结核分枝杆菌分泌效应蛋白的鉴定
- 批准号:
8796158 - 财政年份:2014
- 资助金额:
$ 39.75万 - 项目类别:
相似国自然基金
胃肠道微生物宏基因组的氨基酸消旋酶挖掘及分析
- 批准号:32360034
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
甘油制α-氨基酸钌基双金属催化剂的构筑及产物调控策略
- 批准号:22308255
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
探究和营清热方及其重要单体绿原酸下调AGEs/SOGA1信号通路抑制糖尿病视网膜病变的作用机制
- 批准号:82305319
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
丙酮酸羧化酶乳酸化修饰介导TCA回补途径调控肺泡巨噬细胞极化在脓毒症ARDS中的机制研究
- 批准号:82300100
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
去势环境下CAF来源的CREB3L4通过增强癌细胞脂肪酸合成促进前列腺癌转移的机制研究
- 批准号:82303434
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Librational Mode Coupling Theory of Allosteric Signal Transmission
变构信号传输的解放模式耦合理论
- 批准号:
10360233 - 财政年份:2022
- 资助金额:
$ 39.75万 - 项目类别:
Elucidating Angular Protein Motion using Kinetic Ensemble Refinement
使用动力学系综细化阐明角蛋白运动
- 批准号:
10203376 - 财政年份:2021
- 资助金额:
$ 39.75万 - 项目类别:
Protein Palmitoylation and the Etiology of X-Linked Intellectual Disabilities
蛋白质棕榈酰化和 X 连锁智力障碍的病因学
- 批准号:
9278318 - 财政年份:2016
- 资助金额:
$ 39.75万 - 项目类别:
Evaluation of TRB-N0224, a Proprietary Chemically Modified Curcumin, for the Treatment of Periodontal Disease in a LPS-Induced Rat Model
TRB-N0224(一种专有的化学修饰姜黄素)在 LPS 诱导的大鼠模型中治疗牙周病的评估
- 批准号:
8834328 - 财政年份:2015
- 资助金额:
$ 39.75万 - 项目类别:
The Role of Secondary Interactions Relevant to Biological Reductions of Small Molecules
与小分子生物还原相关的次级相互作用的作用
- 批准号:
8885996 - 财政年份:2015
- 资助金额:
$ 39.75万 - 项目类别: