PFI-TT: A Rapid Multiplexed Diagnostic Tool for Serology of Tick-Borne Diseases

PFI-TT:蜱传疾病血清学快速多重诊断工具

基本信息

  • 批准号:
    2345816
  • 负责人:
  • 金额:
    $ 55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-03-01 至 2026-02-28
  • 项目状态:
    未结题

项目摘要

This Partnerships for Innovation - Technology Translation (PFI-TT) project seeks to improve blood-based detection of tick-borne diseases (TBDs) through an innovative, multiplexed, serological point-of-care (POC) assay. Addressing a critical gap in current TBD diagnostic methods, this project will develop a comprehensive platform for Lyme disease, Babesia, Anaplasma, and relapsing fever. By encompassing different TBDs co-located in similar geographical areas, the platform provides a single test solution to determine exposure to multiple TBDs, thus capturing a significant segment of the available market. The simplicity and affordability of the tool make it beneficial for resource-limited and rural areas, most impacted by TBDs. Furthermore, the platform is expected to have significant societal and healthcare benefits, allowing patients and physicians to conduct timely testing to measure immune response against multiple TBDs, which is critical in determining patient care and treatment regimens. The commercial potential of this project lies in filling a substantial market need for comprehensive and cost-effective TBD diagnostics, promising widespread adoption in various healthcare settings, including clinics and field-stations. By enhancing scientific understanding and technology in the medical diagnostics field, this project aligns with the broader goal of improving global health.This project focuses on the development of a POC, multiplexed, serological assay capable of detecting multiple TBDs simultaneously. The technology addresses the challenge of cross-reactivity, co-infection of different TBDs in endemic regions and limited sensitivity and specificity in current serological tests. By integrating specific antigen epitopes for various TBDs into a single multiplexed assay and employing advanced machine learning algorithms, this solution aims to significantly enhance serodiagnostic accuracy. The research involves iterative epitope selection and optimization of the paper-based immunoreaction platform comprising the multiplexed panel. The technology also involves developing a robust, machine learning-based diagnostic algorithm to analyze different biomarker-specific signals into interpretable and actionable diagnoses that can be used by physicians to treat patients. This project addresses the current lack of a point-of-care (POC) multiplexed test for TBDs, where patients typically require multiple tests at different centralized labs. The project's anticipated outcomes include improved serodiagnostic capabilities for various TBDs, contributing significantly to the fields of medical diagnostics and public health, particularly in areas with a high prevalence of tick-borne infections.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这种创新的合作伙伴关系 - 技术翻译(PFI-TT)项目旨在通过创新的,多重的,血清学点(POC)测定法改善基于血液的tick传播疾病(TBD)的检测。解决当前TBD诊断方法的关键差距,该项目将为莱姆病,贝贝斯,厌食和发烧开发一个全面的平台。通过涵盖在相似地理区域共同列为同期的不同TBD,该平台提供了一个单个测试解决方案,以确定暴露于多个TBD,从而捕获了可用市场的很大一部分。该工具的简单性和负担能力使其对受TBD的影响最大,对资源有限和农村地区有益。此外,该平台有望具有重大的社会和医疗保健益处,使患者和医生可以及时进行测试以测量针对多个TBD的免疫反应,这对于确定患者护理和治疗方案至关重要。该项目的商业潜力在于满足对全面且具有成本效益的TBD诊断的巨大市场需求,这有望在包括诊所和现场站在内的各种医疗机构中广泛采用。通过增强医学诊断领域的科学理解和技术,该项目与改善全球健康的更广泛的目标相吻合。该项目着重于开发POC,多重的,血清学测定能够同时检测多个TBD的血清学测定。该技术解决了交叉反应性的挑战,在地方性地区的不同TBD共同感染以及在当前血清学测试中的敏感性和特异性有限。通过将各种TBD的特定抗原表位整合到单个多路复用测定中并采用先进的机器学习算法,该解决方案旨在显着提高血清诊断的准确性。该研究涉及迭代表位选择和包括多重面板的纸基免疫反应平台的优化。该技术还涉及开发一种基于机器学习的诊断算法,以将不同的生物标志物特异性信号分析为可解释且可操作的诊断,医生可以用来治疗患者。该项目解决了目前缺乏对TBD的保健点(POC)多路复用测试,在该测试中,患者通常需要在不同的集中式实验室进行多次测试。该项目的预期结果包括提高各种TBD的血清诊断能力,对医学诊断和公共卫生的领域产生了很大的贡献,尤其是在tick传播感染率很高的领域。这奖反映了NSF的立法任务,并被认为是通过基金会的智力效果和广泛的评估来评估的,并且值得通过评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Aydogan Ozcan其他文献

All-Optical Computing of a Group of Linear Transformations Using a Polarization Multiplexed Diffractive Neural Network
使用偏振复用衍射神经网络对一组线性变换进行全光计算
An insertable glucose sensor using a compact and cost-effective phosphorescence lifetime imager and machine learning
一种插入式葡萄糖传感器,采用紧凑且经济高效的磷光寿命成像仪和机器学习
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Artem Goncharov;Z. Gorocs;Ridhi Pradhan;B. Ko;Ajmal Ajmal;Andres Rodriguez;David Baum;Marcell Veszpremi;Xilin Yang;Maxime Pindrys;Tianle Zheng;Oliver Wang;Jessica Ramella;Michael J. McShane;Aydogan Ozcan
  • 通讯作者:
    Aydogan Ozcan
Time-Domain Terahertz Video Captured with a Plasmonic Photoconductive Focal-Plane Array
使用等离激元光电导焦平面阵列捕获的时域太赫兹视频
  • DOI:
    10.1364/cleo_at.2023.jth2a.113
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xurong Li;Deniz Mengu;Aydogan Ozcan;M. Jarrahi
  • 通讯作者:
    M. Jarrahi
Deep Learning to Refocus 3D Images
深度学习重新聚焦 3D 图像
  • DOI:
    10.1364/opn.31.12.000057
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yichen Wu;Y. Rivenson;Hongda Wang;Yilin Luo;Eyal Ben;L. Bentolila;C. Pritz;Aydogan Ozcan
  • 通讯作者:
    Aydogan Ozcan
Multispectral Quantitative Phase Imaging Using a Diffractive Optical Network
使用衍射光网络的多光谱定量相位成像
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Che;Jingxi Li;Deniz Mengu;Aydogan Ozcan
  • 通讯作者:
    Aydogan Ozcan

Aydogan Ozcan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Aydogan Ozcan', 18)}}的其他基金

Biopsy-free, label-free 3D virtual histology of intact skin
完整皮肤的免活检、免标记 3D 虚拟组织学
  • 批准号:
    2141157
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Deep learning-based serological test for point-of-care analysis of COVID-19 immunity with a paper-based multiplexed sensor
基于深度学习的血清学测试,使用纸基多重传感器对 COVID-19 免疫力进行即时分析
  • 批准号:
    2149551
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
I-Corps: Multiplexed paper-based test for rapid diagnosis of early-stage Lyme Disease
I-Corps:用于快速诊断早期莱姆病的多重纸质测试
  • 批准号:
    2055749
  • 财政年份:
    2021
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
EAGER: High-throughput early detection and analysis of COVID-19 plaque formation using time-lapse coherent imaging and deep learning
EAGER:使用延时相干成像和深度学习对 COVID-19 斑块形成​​进行高通量早期检测和分析
  • 批准号:
    2034234
  • 财政年份:
    2020
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
EAGER: All-Optical Information Processing Device for Seeing Through Diffusers at the Speed of Light
EAGER:以光速透过漫射器的全光学信息处理装置
  • 批准号:
    2054102
  • 财政年份:
    2020
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
NSF EAGER: DEEP LEARNING-BASED VIRTUAL HISTOLOGY STAINING OF TISSUE SAMPLES
NSF EAGER:基于深度学习的组织样本虚拟组织学染色
  • 批准号:
    1926371
  • 财政年份:
    2019
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
PFI:BIC Human-Centered Smart-Integration of Mobile Imaging and Sensing Tools with Machine Learning for Ubiquitous Quantification of Waterborne and Airborne Nanoparticles
PFI:BIC 以人为中心的移动成像和传感工具与机器学习的智能集成,可实现水性和空气性纳米粒子的普遍定量
  • 批准号:
    1533983
  • 财政年份:
    2015
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
EAGER: Mobile-phone based single molecule imaging of DNA and length quantification to analyze copy-number variations in genome
EAGER:基于手机的 DNA 单分子成像和长度定量分析基因组中的拷贝数变异
  • 批准号:
    1444240
  • 财政年份:
    2014
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
EFRI-BioFlex: Cellphone-based Digital Immunoassay Platform for High-throughput Sensitive and Multiplexed Detection and Distributed Spatio-Temporal Analysis of Influenza
EFRI-BioFlex:基于手机的数字免疫分析平台,用于流感的高通量灵敏多重检测和分布式时空分析
  • 批准号:
    1332275
  • 财政年份:
    2013
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
CAREER: A new Telemedicine Platform using Incoherent Lensfree Cell Holography and Microscopy On a Chip
事业:使用非相干无透镜细胞全息术和芯片显微镜的新型远程医疗平台
  • 批准号:
    0954482
  • 财政年份:
    2010
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant

相似国自然基金

苯并呋喃-6-酮类化合物TT01f通过调控Jagged1/Notch信号通路改善特发性肺纤维化的药理学机制研究
  • 批准号:
    82304596
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
TT3.2通过自噬体-液泡途径调控水稻盐胁迫抗性的分子机制研究
  • 批准号:
    32301745
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于肌红蛋白构象及其氧化还原体系探究tt-DDE加速生鲜牛肉肉色劣变的分子机制
  • 批准号:
    32372384
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
核用690TT合金传热管表面划伤诱导应力腐蚀裂纹萌生机理研究
  • 批准号:
    52273321
  • 批准年份:
    2022
  • 资助金额:
    53.00 万元
  • 项目类别:
    面上项目
TT02通过巨噬细胞外囊泡miR-122/Wnt途径拮抗石英诱导肺纤维化的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

PFI-TT: Development of a Prototype for Rapid Diagnosis of Food-Borne Pathogen
PFI-TT:开发快速诊断食源性病原体的原型
  • 批准号:
    2329834
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
PFI-TT: Development of Easy-to-Use Affordable Sensors for Rapid Detection of Environmental Pollutants
PFI-TT:开发易于使用且经济实惠的传感器,用于快速检测环境污染物
  • 批准号:
    2141017
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
PFI-TT: A Rapid Multi-Contaminant Degradation System for Water Wells
PFI-TT:水井多污染物快速降解系统
  • 批准号:
    2141162
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
PFI-TT: Development of A Rapid and Reliable Point-of-Care Screening for Infectious Diseases (COVID-19)
PFI-TT:开发快速可靠的传染病 (COVID-19) 护理点筛查
  • 批准号:
    2141141
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
PFI-TT: Development of a Bubble Printer for Low-cost, Rapid Fabrication of High-Resolution Displays
PFI-TT:开发用于低成本、快速制造高分辨率显示器的气泡打印机
  • 批准号:
    2140985
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了