NSF EAGER: DEEP LEARNING-BASED VIRTUAL HISTOLOGY STAINING OF TISSUE SAMPLES
NSF EAGER:基于深度学习的组织样本虚拟组织学染色
基本信息
- 批准号:1926371
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Microscopic imaging of tissue samples is a fundamental tool used for the diagnosis of various diseases and forms the workhorse of pathology and biological sciences. The clinically-established gold standard image of a tissue section is the result of a laborious process. This work will demonstrate the ability to virtually stain label-free tissue sections and will revolutionize the current paradigm for histological analysis.To demonstrate deep learning-based virtual histology staining of label-free human tissue samples this proposal will use salivary gland, thyroid, kidney, liver and lung samples, and will use three commonly used stains: H&E (salivary gland and thyroid), Jones stain (kidney) and Masson's Trichrome (liver and lung). This proposal will determine the staining efficacy of the proposed approach for whole slide images and will blindly evaluate the virtually stained outputs with gold standard stained samples. The output of this proposed system will be validated by a group of pathologists who will compare histopathological features with the virtual staining technique against conventional histology techniques.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
组织样品的微观成像是一种基本工具,用于诊断各种疾病,形成病理学和生物科学的主力。组织部分的临床建立的黄金标准图像是一个费力的过程。 This work will demonstrate the ability to virtually stain label-free tissue sections and will revolutionize the current paradigm for histological analysis.To demonstrate deep learning-based virtual histology staining of label-free human tissue samples this proposal will use salivary gland, thyroid, kidney, liver and lung samples, and will use three commonly used stains: H&E (salivary gland and thyroid), Jones stain (肾脏)和Masson的三色(肝脏和肺)。该提案将确定整个幻灯片图像的拟议方法的染色功效,并将用金标准染色样品盲目评估几乎染色的输出。该提出的系统的输出将由一组病理学家验证,他们将将组织病理学特征与针对常规组织学技术进行虚拟染色技术进行比较。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响的审查标准来通过评估来进行评估的。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Virtual Immunohistochemical Staining of Label-free Breast Tissue Using Deep Learning
使用深度学习对无标记乳腺组织进行虚拟免疫组织化学染色
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:B. Bai, H. Wang
- 通讯作者:B. Bai, H. Wang
Digital synthesis of histological stains using micro-structured and multiplexed virtual staining of label-free tissue
- DOI:10.1038/s41377-020-0315-y
- 发表时间:2020-05-06
- 期刊:
- 影响因子:19.4
- 作者:Zhang, Yijie;de Haan, Kevin;Ozcan, Aydogan
- 通讯作者:Ozcan, Aydogan
Deep learning-based transformation of H&E stained tissue into special stains
基于深度学习的H变换
- DOI:10.1364/cleo_at.2022.ath2i.4
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:de Haan, Kevin;Zhang, Yijie;Zuckerman, Jonathan E.;Liu, Tairan;Rivenson, Yair;Wallace, W. Dean;Ozcan, Aydogan
- 通讯作者:Ozcan, Aydogan
Virtual stain transfer in histology via cascaded deep neural networks
- DOI:10.1021/acsphotonics.2c00932
- 发表时间:2022-07
- 期刊:
- 影响因子:0
- 作者:Xilin Yang;Bijie Bai;Yijie Zhang;Yuzhu Li;K. Haan;Tairan Liu;Aydogan Ozcan
- 通讯作者:Xilin Yang;Bijie Bai;Yijie Zhang;Yuzhu Li;K. Haan;Tairan Liu;Aydogan Ozcan
Neural network-based multiplexed and micro-structured virtual staining of unlabeled tissue
基于神经网络的未标记组织的多重和微结构虚拟染色
- DOI:10.1364/cleo_at.2022.ath2i.2
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Zhang, Yijie;de Haan, Kevin;Li, Jingxi;Rivenson, Yair;Ozcan, Aydogan
- 通讯作者:Ozcan, Aydogan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aydogan Ozcan其他文献
All-Optical Computing of a Group of Linear Transformations Using a Polarization Multiplexed Diffractive Neural Network
使用偏振复用衍射神经网络对一组线性变换进行全光计算
- DOI:
10.1364/cleo_si.2023.sm3j.3 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Jingxi Li;Yi;Onur Kulce;Deniz Mengu;Aydogan Ozcan - 通讯作者:
Aydogan Ozcan
An insertable glucose sensor using a compact and cost-effective phosphorescence lifetime imager and machine learning
一种插入式葡萄糖传感器,采用紧凑且经济高效的磷光寿命成像仪和机器学习
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Artem Goncharov;Z. Gorocs;Ridhi Pradhan;B. Ko;Ajmal Ajmal;Andres Rodriguez;David Baum;Marcell Veszpremi;Xilin Yang;Maxime Pindrys;Tianle Zheng;Oliver Wang;Jessica Ramella;Michael J. McShane;Aydogan Ozcan - 通讯作者:
Aydogan Ozcan
Deep Learning to Refocus 3D Images
深度学习重新聚焦 3D 图像
- DOI:
10.1364/opn.31.12.000057 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Yichen Wu;Y. Rivenson;Hongda Wang;Yilin Luo;Eyal Ben;L. Bentolila;C. Pritz;Aydogan Ozcan - 通讯作者:
Aydogan Ozcan
Time-Domain Terahertz Video Captured with a Plasmonic Photoconductive Focal-Plane Array
使用等离激元光电导焦平面阵列捕获的时域太赫兹视频
- DOI:
10.1364/cleo_at.2023.jth2a.113 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Xurong Li;Deniz Mengu;Aydogan Ozcan;M. Jarrahi - 通讯作者:
M. Jarrahi
Multispectral Quantitative Phase Imaging Using a Diffractive Optical Network
使用衍射光网络的多光谱定量相位成像
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:7.4
- 作者:
Che;Jingxi Li;Deniz Mengu;Aydogan Ozcan - 通讯作者:
Aydogan Ozcan
Aydogan Ozcan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aydogan Ozcan', 18)}}的其他基金
PFI-TT: A Rapid Multiplexed Diagnostic Tool for Serology of Tick-Borne Diseases
PFI-TT:蜱传疾病血清学快速多重诊断工具
- 批准号:
2345816 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Biopsy-free, label-free 3D virtual histology of intact skin
完整皮肤的免活检、免标记 3D 虚拟组织学
- 批准号:
2141157 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Deep learning-based serological test for point-of-care analysis of COVID-19 immunity with a paper-based multiplexed sensor
基于深度学习的血清学测试,使用纸基多重传感器对 COVID-19 免疫力进行即时分析
- 批准号:
2149551 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
I-Corps: Multiplexed paper-based test for rapid diagnosis of early-stage Lyme Disease
I-Corps:用于快速诊断早期莱姆病的多重纸质测试
- 批准号:
2055749 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: High-throughput early detection and analysis of COVID-19 plaque formation using time-lapse coherent imaging and deep learning
EAGER:使用延时相干成像和深度学习对 COVID-19 斑块形成进行高通量早期检测和分析
- 批准号:
2034234 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: All-Optical Information Processing Device for Seeing Through Diffusers at the Speed of Light
EAGER:以光速透过漫射器的全光学信息处理装置
- 批准号:
2054102 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
PFI:BIC Human-Centered Smart-Integration of Mobile Imaging and Sensing Tools with Machine Learning for Ubiquitous Quantification of Waterborne and Airborne Nanoparticles
PFI:BIC 以人为中心的移动成像和传感工具与机器学习的智能集成,可实现水性和空气性纳米粒子的普遍定量
- 批准号:
1533983 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: Mobile-phone based single molecule imaging of DNA and length quantification to analyze copy-number variations in genome
EAGER:基于手机的 DNA 单分子成像和长度定量分析基因组中的拷贝数变异
- 批准号:
1444240 - 财政年份:2014
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EFRI-BioFlex: Cellphone-based Digital Immunoassay Platform for High-throughput Sensitive and Multiplexed Detection and Distributed Spatio-Temporal Analysis of Influenza
EFRI-BioFlex:基于手机的数字免疫分析平台,用于流感的高通量灵敏多重检测和分布式时空分析
- 批准号:
1332275 - 财政年份:2013
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAREER: A new Telemedicine Platform using Incoherent Lensfree Cell Holography and Microscopy On a Chip
事业:使用非相干无透镜细胞全息术和芯片显微镜的新型远程医疗平台
- 批准号:
0954482 - 财政年份:2010
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似国自然基金
渴望及其对农村居民收入差距的影响研究
- 批准号:71903117
- 批准年份:2019
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
威胁应对视角下的消费者触摸渴望及其补偿机制研究
- 批准号:71502075
- 批准年份:2015
- 资助金额:17.5 万元
- 项目类别:青年科学基金项目
相似海外基金
EAGER: Fertilizing the Tree of Life with novel taxa from deep-sea vent microbial metagenomes collected over time and space
EAGER:用随时间和空间收集的深海喷口微生物宏基因组中的新类群为生命之树施肥
- 批准号:
2409507 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: IMPRESS-U: Random Matrix Theory and its Applications to Deep Learning
EAGER:IMPRESS-U:随机矩阵理论及其在深度学习中的应用
- 批准号:
2401227 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: CET: Advancing Sustainable Cathode Recycling of Spent Lithium-Ion Batteries using Deep Eutectic Solvents
EAGER:CET:使用低共熔溶剂推进废旧锂离子电池的可持续阴极回收
- 批准号:
2343621 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: Integrating Multi-Omics Biological Networks and Ontologies for lncRNA Function Annotation using Deep Learning
EAGER:使用深度学习集成多组学生物网络和本体以进行 lncRNA 功能注释
- 批准号:
2400785 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAS-Climate: EAGER – Preventing Pore Clogging by Aggregated Carbohydrate Nanocrystals during CO2 Sequestration in Deep Saline Aquifers
CAS-Climate:EAGER — 在深层咸水层二氧化碳封存过程中防止聚集的碳水化合物纳米晶体堵塞孔隙
- 批准号:
2233585 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant