Degenerate diffusions in finite and infinite dimensions: smoothing and convergence
有限和无限维度的简并扩散:平滑和收敛
基本信息
- 批准号:2246491
- 负责人:
- 金额:$ 24.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Dynamics that evolve randomly in time are used to describe the behavior of financial markets, turbulence, and complex biological systems. Furthermore, they play a key role in big data algorithms. In many of these contexts, randomness enters the system only through a limited number of directions in space. This sparsity of randomness and the often high or infinite-dimensional nature of the equations lead to numerous mathematical challenges, from obtaining basic structural properties of to establishing finer aspects of the dynamics. This project will explore how the limited randomness interacts with nonlinearity to produce smoothing, leading to criteria for the existence of solutions and equilibria. The work will focus on fluid models with random forcing terms, where very little is known about such behavior. Finer properties of the stochastic dynamics will also be studied, especially how fast the system converges to equilibrium as certain parameters in the system are removed. The aim in this context is to understand the anomalous dissipation phenomenon in fluids. The planned work will involve postdoctoral researchers, graduate students, and undergraduate students. Further synergistic activities will include an online cross-university research reading group and a probability reading group at Iowa State University. This project encompasses several topics at the interface of stochastic analysis and dynamical systems. Diffusions with degenerate noise in both high and infinite dimensions will be studied. A key goal is to understand how noise interacts with nonlinearities to produce smoothing, in the sense that the dynamics belongs to an improved Sobolev space for positive times, and convergence, in the sense that the system settles into a unique statistically steady state for large times. Such understanding is fundamental for deducing basic structural properties of solutions (e.g. large-time existence/ergodicity in the relevant topology), yet it is absent in many important models in turbulence and statistical mechanics. Finer properties of such systems (e.g. classification of irregular points, the meaning of "hypoellipticty" in infinite dimensions, and the anomalous dissipation phenomenon) will also be studied. Many of the equations to be investigated are physical models (e.g. the two-dimensional stochastically forced and damped Euler equations or second-order Langevin dynamics), while others are simplified models to help build understanding in the motivating equations. This work will build on previous research of the awardee by developing methods to analyze the systems for both large and bounded values of the phase space.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随时间随机演变的动力学用于描述金融市场、动荡和复杂生物系统的行为。 此外,它们在大数据算法中发挥着关键作用。 在许多这样的情况下,随机性仅通过有限数量的空间方向进入系统。 这种随机性的稀疏性以及方程通常的高维或无限维性质导致了许多数学挑战,从获得基本结构特性到建立动力学的更精细方面。该项目将探索有限随机性如何与非线性相互作用以产生平滑,从而得出解和平衡存在的标准。 这项工作将集中于具有随机强迫项的流体模型,人们对这种行为知之甚少。 还将研究随机动力学的更精细特性,特别是当系统中的某些参数被移除时,系统收敛到平衡的速度有多快。 本文的目的是了解流体中的反常耗散现象。计划的工作将涉及博士后研究人员、研究生和本科生。进一步的协同活动将包括爱荷华州立大学的在线跨大学研究阅读小组和概率阅读小组。 该项目涵盖随机分析和动力系统接口的多个主题。 将研究高维和无限维中简并噪声的扩散。 一个关键目标是了解噪声如何与非线性相互作用以产生平滑(从某种意义上说,动态属于正时间的改进的索博列夫空间)和收敛(从某种意义上说,系统在长时间内稳定在独特的统计稳定状态) 。 这种理解对于推导解的基本结构特性(例如相关拓扑中的长时间存在/遍历性)至关重要,但在湍流和统计力学的许多重要模型中却缺乏这种理解。 还将研究此类系统的更精细特性(例如不规则点的分类、无限维中“亚椭圆”的含义以及反常耗散现象)。 许多要研究的方程是物理模型(例如二维随机受力和阻尼欧拉方程或二阶朗之万动力学),而其他方程则是简化模型,以帮助理解激励方程。 这项工作将建立在获奖者之前的研究基础上,开发方法来分析相空间的大值和有界值的系统。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的评估进行评估,被认为值得支持。影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Herzog其他文献
Functional inequalities for a family of infinite-dimensional diffusions with degenerate noise
具有简并噪声的无限维扩散族的函数不等式
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Fabrice Baudoin;M. Gordina;David Herzog;Jina Kim;T. Melcher - 通讯作者:
T. Melcher
Multiregional Evaluation of the SimPlate Heterotrophic Plate Count Method Compared to the Standard Plate Count Agar Pour Plate Method in Water
SimPlate 异养平板计数方法与标准平板计数琼脂倾注平板法的多区域评估
- DOI:
- 发表时间:
2000 - 期刊:
- 影响因子:4.4
- 作者:
R. W. Jackson;Karen Osborne;Gary Barnes;Carol Jolliff;Dianna D. Zamani;Bruce M. Roll;A. Stillings;David Herzog;Shelly Cannon;Scott Loveland - 通讯作者:
Scott Loveland
Early improvement as a resilience signal predicting later remission to antidepressant treatment in patients with Major Depressive Disorder: Systematic review and meta-analysis.
- DOI:
10.1016/j.jpsychires.2017.07.003 - 发表时间:
2017-11-01 - 期刊:
- 影响因子:4.8
- 作者:
S. Wagner;Alice Engel;J. Engelmann;David Herzog;N. Dreimüller;Marianne Müller;A. Tadić;K. Lieb - 通讯作者:
K. Lieb
David Herzog的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Herzog', 18)}}的其他基金
Random Perturbations of Excited Deterministic Systems
受激确定性系统的随机扰动
- 批准号:
1855504 - 财政年份:2019
- 资助金额:
$ 24.54万 - 项目类别:
Standard Grant
Collaborative Research: Propagation of Dissipation: Stochastic Stabilization in Finite and Infinite Dimensions
合作研究:耗散传播:有限和无限维中的随机稳定
- 批准号:
1612898 - 财政年份:2016
- 资助金额:
$ 24.54万 - 项目类别:
Standard Grant
相似国自然基金
非线性对流扩散方程基于广义数值流通量的局部间断有限元方法
- 批准号:12371365
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
可变扩散系数非局部问题的分布式可扩展的有限元并行计算方法
- 批准号:12301496
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
分子传输机理的对流扩散方程最优控制问题建模及其高效有限元算法研究
- 批准号:12271056
- 批准年份:2022
- 资助金额:46 万元
- 项目类别:面上项目
具有非线性界面连接条件扩散方程的单调有限体积格式
- 批准号:
- 批准年份:2022
- 资助金额:29 万元
- 项目类别:地区科学基金项目
脉冲反应扩散神经网络的有限时间稳定性分析及应用
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Diffusions and jump processes on groups and manifolds
群和流形上的扩散和跳跃过程
- 批准号:
2343868 - 财政年份:2024
- 资助金额:
$ 24.54万 - 项目类别:
Continuing Grant
Some topics in Analysis and Probability in Metric Measure Spaces, Random Matrices, and Diffusions
度量测度空间、随机矩阵和扩散中的分析和概率中的一些主题
- 批准号:
2247117 - 财政年份:2023
- 资助金额:
$ 24.54万 - 项目类别:
Standard Grant
Collaborative Research: Infinite horizon risk-sensitive control of diffusions with applications in stochastic networks
合作研究:无限视野风险敏感扩散控制及其在随机网络中的应用
- 批准号:
2216765 - 财政年份:2022
- 资助金额:
$ 24.54万 - 项目类别:
Standard Grant
Collaborative Research: Infinite horizon risk-sensitive control of diffusions with applications in stochastic networks
合作研究:无限视野风险敏感扩散控制及其在随机网络中的应用
- 批准号:
2108682 - 财政年份:2021
- 资助金额:
$ 24.54万 - 项目类别:
Standard Grant
Collaborative Research: Infinite horizon risk-sensitive control of diffusions with applications in stochastic networks
合作研究:无限视野风险敏感扩散控制及其在随机网络中的应用
- 批准号:
2108683 - 财政年份:2021
- 资助金额:
$ 24.54万 - 项目类别:
Standard Grant