NSF Convergence Accelerator Track M: Water-responsive Materials for Evaporation Energy Harvesting

NSF 收敛加速器轨道 M:用于蒸发能量收集的水响应材料

基本信息

项目摘要

Many important physiological functions of plants (e.g., seed dispersal and burial) rely on water-responsive (WR) materials that mechanically deform in response to changes in relative humidity (RH). Recently, biological WR materials have demonstrated the capability to generate significantly higher energy actuation compared to all known muscles and actuators. They have enabled the development of evaporation energy harvesting engines and generators that operate autonomously when placed at a suitable air-water vapor interface. Theoretical and physical studies suggest that these devices are highly scalable and could produce power comparable to current solar and wind farms, while mitigating the intermittency issue that is often experienced by these renewable energy sources. Despite their promise, the development of WR materials and their use in evaporation energy harvesting is still in its infancy and faces a broad array of challenges. The overarching goal of this research is to make transformative progress on a new evaporation energy harvesting technique based on WR materials and move the technique from lab-scale to the real world. The research proposes an innovative and transdisciplinary solution to the global energy transition, forwarding an approach that is cost-effective, non-polluting, and fully sustainable, using bio-inspired analogs of the evaporation phase in the hydrologic cycle to power the next generation of energy harvesting devices. The researchers envision that the proposed convergence research will significantly accelerate the growth of the emerging fields of WR materials and evaporation energy harvesting. Ultimately, this research will establish groundbreaking approaches for society to use the ubiquitous and untapped energy source of natural evaporation for actuation, energy conversion, and environmental protection. The proposed broadening participation activities will provide resources, research, and training opportunities to students from underrepresented groups, greatly benefiting STEM education and contribute to education and workforce development in sustainable design.Through convergent and interdisciplinary approaches that merge biomaterials, chemistry, simulation/artificial intelligence (AI), engineering, product design, techno-economic energy analysis, environmental impact and life-cycle analysis, hydrologic analysis, manufacturing/production, and public policy, we aim to: (i) explore and develop new WR materials; (ii) scale-up the WR material manufacturing using sustainable design principles; (iii) execute system-level prototypes of evaporation energy harvesting devices; and (iv) assess techno-economic feasibility and develop marketing strategies. The proposed work will enhance our understanding of the fundamental WR principles of natural materials, as well as provide general guidelines to engineer nanoscale WR materials into macroscale structures. These insights will guide the design of biologically-based WR materials with superior energy/power densities compared to existing actuators, opening up novel opportunities for using sustainable, muscle-like actuators in a wide array of engineering applications. Moreover, the proposed lab-scale prototyping and modeling of the evaporation energy harvesting systems will provide new strategies for utilizing WR materials to drive the rotary motion of mechanical devices sourced through evaporation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
植物的许多重要生理功能(例如种子分散和埋葬)依赖于水反应性(WR)材料,这些材料会因响应相对湿度的变化而机械变形(RH)。最近,与所有已知肌肉和执行器相比,生物WR材料已经证明了能够产生更高的能量致动的能力。它们使蒸发能量收集发动机和发电机的开发在适当的空气水蒸气界面时自动运行。理论和物理研究表明,这些设备具有高度可扩展性,并且可能产生与当前太阳能和风电场相当的功率,同时减轻这些可再生能源经常经历的间歇性问题。尽管有希望,但WR材料的发展及其在蒸发能源收集中的使用仍处于起步阶段,并且面临着广泛的挑战。这项研究的总体目标是基于WR材料的新蒸发能量收集技术进行变革性进步,并将技术从实验室规模转移到现实世界。该研究提出了对全球能源过渡的创新和跨学科的解决方案,使用了一种具有成本效益,不污染和完全可持续性的方法,该方法使用了水文周期中蒸发阶段的生物启发的类似物,以动力下一代能源收集设备。研究人员认为,拟议的融合研究将显着加速WR材料和蒸发能量收获的新兴领域的增长。最终,这项研究将为社会建立开创性的方法,以利用无处不在的自然蒸发能源来源进行促进,能量转换和环境保护。 The proposed broadening participation activities will provide resources, research, and training opportunities to students from underrepresented groups, greatly benefiting STEM education and contribute to education and workforce development in sustainable design.Through convergent and interdisciplinary approaches that merge biomaterials, chemistry, simulation/artificial intelligence (AI), engineering, product design, techno-economic energy analysis, environmental impact and life-cycle analysis, hydrologic analysis,制造/生产和公共政策,我们的目标是:(i)探索和开发新的WR材料; (ii)使用可持续设计原理扩展WR材料制造; (iii)执行蒸发能量收集设备的系统级原型; (iv)评估技术经济可行性并制定营销策略。拟议的工作将增强我们对天然材料的基本WR原则的理解,并为工程师Nanoscale WR材料提供一般指南,以纳入宏观的结构。与现有的执行器相比,这些见解将指导具有卓越能量/功率密度的基于生物学的WR材料的设计,从而为在广泛的工程应用中使用可持续的肌肉般的执行器提供了新的机会。此外,拟议的实验室规模原型制作和蒸发能量收集系统的建模将为利用WR材料推动通过蒸发来提出的机械设备的旋转运动提供新的策略。该奖项反映了NSF的法定任务,并认为通过基金会的知识优点和广泛的范围来评估通过评估来进行评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xi Chen其他文献

Enhanced methanol electro-oxidation activity of electrochemically exfoliated graphene-Pt through polyaniline modification
通过聚苯胺改性增强电化学剥离石墨烯-Pt的甲醇电氧化活性
  • DOI:
    10.1016/j.jelechem.2020.113821
  • 发表时间:
    2020-02
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Jin Zhang;Lirui Nan;Wenbo Yue;Xi Chen
  • 通讯作者:
    Xi Chen
Adaptive estimation of multi-regional soil salinization using extreme gradient boosting with Bayesian TPE optimization
基于贝叶斯 TPE 优化的极限梯度提升自适应估计多区域土壤盐渍化
  • DOI:
    10.1080/01431161.2021.2009589
  • 发表时间:
    2022-02
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Baili Chen;Hongwei Zheng;Geping Luo;Chunbo Chen;Anming Bao;Tie Liu;Xi Chen
  • 通讯作者:
    Xi Chen
Customizable nano-sized colloidal tetrahedrons by polymerization-induced particle self-assembly (PIPA)
通过聚合诱导粒子自组装(PIPA)可定制的纳米尺寸胶体四面体
  • DOI:
    10.1039/d2py00407k
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Dan Li;Xi Chen;Min Zeng;Jinzhao Ji;Jinying Yuan
  • 通讯作者:
    Jinying Yuan
A novel TiO2 nanofiber supported PdAg catalyst for methanol electro-oxidation
一种新型 TiO2 纳米纤维负载 PdAg 甲醇电氧化催化剂
  • DOI:
    10.1016/j.energy.2013.06.058
  • 发表时间:
    2013-09
  • 期刊:
  • 影响因子:
    9
  • 作者:
    Jianfeng Ju;Xi Chen;Yijun Shi;Donghui Wu
  • 通讯作者:
    Donghui Wu
Enhancing spin-Hall spin–orbit torque efficiency by bulk spin scattering modulation in ferromagnets with ruthenium impurities
通过含钌杂质的铁磁体中的体自旋散射调制来提高自旋霍尔自旋轨道扭矩效率
  • DOI:
    10.1063/5.0069654
  • 发表时间:
    2021-11
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Guonan Feng;Xi Chen;Di Fu;Jintao Liu;Xinyan Yang;Guanghua Yu
  • 通讯作者:
    Guanghua Yu

Xi Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xi Chen', 18)}}的其他基金

A Novel Contour-based Machine Learning Tool for Reliable Brain Tumour Resection (ContourBrain)
一种基于轮廓的新型机器学习工具,用于可靠的脑肿瘤切除(ContourBrain)
  • 批准号:
    EP/Y021614/1
  • 财政年份:
    2024
  • 资助金额:
    $ 65万
  • 项目类别:
    Research Grant
Collaborative Research: Water-responsive, Shape-shifting Supramolecular Protein Assemblies
合作研究:水响应、变形超分子蛋白质组装体
  • 批准号:
    2304959
  • 财政年份:
    2023
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
CAREER: Programmable Negative Water Adsorption of Bioinspired Hygroscopic Materials
职业:仿生吸湿材料的可编程负吸水
  • 批准号:
    2238129
  • 财政年份:
    2023
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
CAREER: Understanding the Size Effects on Spin-mediated Thermal Transport in Nanostructured Quantum Magnets
职业:了解纳米结构量子磁体中自旋介导的热传输的尺寸效应
  • 批准号:
    2144328
  • 财政年份:
    2022
  • 资助金额:
    $ 65万
  • 项目类别:
    Continuing Grant
CAREER: Model-Free Input Screening and Sensitivity Analysis in Simulation Metamodeling
职业:仿真元建模中的无模型输入筛选和敏感性分析
  • 批准号:
    1846663
  • 财政年份:
    2019
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
S&AS: INT: Traffic Deconfliction for Smart and Autonomous Unmanned Aircraft Systems in Congested Environments
S
  • 批准号:
    1849300
  • 财政年份:
    2019
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
CAREER: A Sequential Learning Framework with Applications to Learning from Crowds
职业:顺序学习框架及其在群体学习中的应用
  • 批准号:
    1845444
  • 财政年份:
    2019
  • 资助金额:
    $ 65万
  • 项目类别:
    Continuing Grant
SusChEM: Chemoenzymatic Methods for Efficient Synthesis of Glycolipids
SusChEM:高效合成糖脂的化学酶法
  • 批准号:
    1300449
  • 财政年份:
    2013
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
CAREER: Bridging Game Theory, Economics and Computer Science: Equilibria, Fixed Points, and Beyond
职业:连接博弈论、经济学和计算机科学:均衡、不动点及其他
  • 批准号:
    1149257
  • 财政年份:
    2012
  • 资助金额:
    $ 65万
  • 项目类别:
    Continuing Grant
Chemoenzymatic methods for automated carbohydrate synthesis
自动碳水化合物合成的化学酶法
  • 批准号:
    1012511
  • 财政年份:
    2010
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant

相似国自然基金

Landau方程和Vlasov-Poisson-Boltzmann方程组解的适定性和收敛率的研究
  • 批准号:
    12301284
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
椭圆方程约束最优控制问题自适应有限元算法的收敛性研究
  • 批准号:
    12301472
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Hamilton-Jacobi方程粘性解在扰动下的收敛性
  • 批准号:
    12301228
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向无线联邦学习的三层规划异步优化算法及收敛率研究
  • 批准号:
    12371519
  • 批准年份:
    2023
  • 资助金额:
    44.00 万元
  • 项目类别:
    面上项目
深度神经网络的收敛性理论
  • 批准号:
    12371103
  • 批准年份:
    2023
  • 资助金额:
    44.00 万元
  • 项目类别:
    面上项目

相似海外基金

NSF Convergence Accelerator Track L: HEADLINE - HEAlth Diagnostic eLectronIc NosE
NSF 融合加速器轨道 L:标题 - 健康诊断电子 NosE
  • 批准号:
    2343806
  • 财政年份:
    2024
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator track L: Translating insect olfaction principles into practical and robust chemical sensing platforms
NSF 融合加速器轨道 L:将昆虫嗅觉原理转化为实用且强大的化学传感平台
  • 批准号:
    2344284
  • 财政年份:
    2024
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track K: Unraveling the Benefits, Costs, and Equity of Tree Coverage in Desert Cities
NSF 融合加速器轨道 K:揭示沙漠城市树木覆盖的效益、成本和公平性
  • 批准号:
    2344472
  • 财政年份:
    2024
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track L: Smartphone Time-Resolved Luminescence Imaging and Detection (STRIDE) for Point-of-Care Diagnostics
NSF 融合加速器轨道 L:用于即时诊断的智能手机时间分辨发光成像和检测 (STRIDE)
  • 批准号:
    2344476
  • 财政年份:
    2024
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track L: Intelligent Nature-inspired Olfactory Sensors Engineered to Sniff (iNOSES)
NSF 融合加速器轨道 L:受自然启发的智能嗅觉传感器,专为嗅探而设计 (iNOSES)
  • 批准号:
    2344256
  • 财政年份:
    2024
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了